首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Calnexin is a membrane protein of the endoplasmic reticulum (ER) that functions as a molecular chaperone and as a component of the ER quality control machinery. Calreticulin, a soluble analog of calnexin, is thought to possess similar functions, but these have not been directly demonstrated in vivo. Both proteins contain a lectin site that directs their association with newly synthesized glycoproteins. Although many glycoproteins bind to both calnexin and calreticulin, there are differences in the spectrum of glycoproteins that each binds. Using a Drosophila expression system and the mouse class I histocompatibility molecule as a model glycoprotein, we found that calreticulin does possess apparent chaperone and quality control functions, enhancing class I folding and subunit assembly, stabilizing subunits, and impeding export of assembly intermediates from the ER. Indeed, the functions of calnexin and calreticulin were largely interchangeable. We also determined that a soluble form of calnexin (residues 1-387) can functionally replace its membrane-bound counterpart. However, when calnexin was expressed as a soluble protein in L cells, the pattern of associated glycoproteins changed to resemble that of calreticulin. Conversely, membrane-anchored calreticulin bound to a similar set of glycoproteins as calnexin. Therefore, the different topological environments of calnexin and calreticulin are important in determining their distinct substrate specificities.  相似文献   

2.
ERp57 is a lumenal protein of the endoplasmic reticulum (ER) and a member of the protein disulfide isomerase (PDI) family. In contrast to archetypal PDI, ERp57 interacts specifically with newly synthesized glycoproteins. In this study we demonstrate that ERp57 forms discrete complexes with the ER lectins, calnexin and calreticulin. Specific ERp57/calreticulin complexes exist in canine pancreatic microsomes, as demonstrated by SDS-PAGE after cross-linking, and by native electrophoresis in the absence of cross-linking. After in vitro translation and import into microsomes, radiolabeled ERp57 can be cross-linked to endogenous calreticulin and calnexin while radiolabeled PDI cannot. Likewise, radiolabeled calreticulin is cross-linked to endogenous ERp57 but not PDI. Similar results were obtained in Lec23 cells, which lack the glucosidase I necessary to produce glycoprotein substrates capable of binding to calnexin and calreticulin. This observation indicates that ERp57 interacts with both of the ER lectins in the absence of their glycoprotein substrate. This result was confirmed by a specific interaction between in vitro synthesized calreticulin and ERp57 prepared in solution in the absence of other ER components. We conclude that ERp57 forms complexes with both calnexin and calreticulin and propose that it is these complexes that can specifically modulate glycoprotein folding within the ER lumen.  相似文献   

3.
The limitations of high-level expression of virus surface proteins in yeast are not well understood. The inefficiency of yeast to produce active human virus surface glycoproteins, as well as other mammalian glycoproteins, is usually explained by the inefficient folding of the glycoprotein into its characteristic and functional three-dimensional structure from a random coil. The endoplasmic reticulum (ER) is a highly versatile protein factory that is equipped with chaperones and folding enzymes essential for protein folding. To improve folding and solubility of viral surface glycoprotein, the genes encoding human ER resident chaperones calnexin, calreticulin, immunoglobin binding protein (BiP), protein disulfide isomerase (PDI) and foldase (ERp57) were coexpressed together with hemagglutinin gene from measles virus in the yeast Saccharomyces cerevisiae. The effect of coexpressing chaperones on the total yield of measles virus hemagglutinin (MeH) as well as the intracellular fate of the glycoprotein was determined. Our results demonstrated that coexpression of human calnexin noticeably enhanced the quantity of the soluble glycosylated form of MeH in yeast. The coexpression of human calreticulin-, PDI-, ERp57- and BiP-encoding genes did not improve the quality of recombinant MeH.  相似文献   

4.
Land A  Braakman I 《Biochimie》2001,83(8):783-790
The lumen of the endoplasmic reticulum (ER) provides a unique folding environment that is distinct from other organelles supporting protein folding. The relatively oxidizing milieu allows the formation of disulfide bonds. N-linked oligosaccharides that are attached during synthesis play multiple roles in the folding process of glycoproteins. They stabilize folded domains and increase protein solubility, which prevents aggregation of folding intermediates. Glycans mediate the interaction of newly synthesized glycoproteins with some resident ER folding factors, such as calnexin and calreticulin. Here we present an overview of the present knowledge on the folding process of the heavily glycosylated human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein in the ER.  相似文献   

5.
The hepatitis C virus (HCV) genome encodes two envelope glycoproteins (E1 and E2) which interact noncovalently to form a heterodimer (E1-E2). During the folding and assembly of HCV glycoproteins, a large portion of these proteins are trapped in aggregates, reducing the efficiency of native E1-E2 complex assembly. To better understand this phenomenon and to try to increase the efficiency of HCV glycoprotein folding, endoplasmic reticulum chaperones potentially interacting with these proteins were studied. Calnexin, calreticulin, and BiP were shown to interact with E1 and E2, whereas no interaction was detected between GRP94 and HCV glycoproteins. The association of HCV glycoproteins with calnexin and calreticulin was faster than with BiP, and the kinetics of interaction with calnexin and calreticulin were very similar. However, calreticulin and BiP interacted preferentially with aggregates whereas calnexin preferentially associated with monomeric forms of HCV glycoproteins or noncovalent complexes. Tunicamycin treatment inhibited the binding of HCV glycoproteins to calnexin and calreticulin, indicating the importance of N-linked oligosaccharides for these interactions. The effect of the co-overexpression of each chaperone on the folding of HCV glycoproteins was also analyzed. However, the levels of native E1-E2 complexes were not increased. Together, our data suggest that calnexin plays a role in the productive folding of HCV glycoproteins whereas calreticulin and BiP are probably involved in a nonproductive pathway of folding.  相似文献   

6.
7.
The endoplasmic reticulum (ER) is a major site of protein synthesis and its inside, or lumen, is a major site of protein folding. The lumen of the ER contains many folding factors and molecular chaperones, which facilitate protein folding by increasing both the rate and the efficiency of this process. Amongst the many ER folding factors, there are three components that specifically modulate the folding glycoproteins bearing N-linked carbohydrate side chains. These components are calnexin, calreticulin and ERp57, and this review focuses on the molecular basis for their capacity to influence glycoprotein folding.  相似文献   

8.
The membrane glycoproteins G1 and G2 of Uukuniemi virus, a member of the Bunyaviridae family, are cotranslationally cleaved from a common precursor in the endoplasmic reticulum (ER). Here, we show that newly made G1 and G2 associate transiently with calnexin and calreticulin, two lectins involved in glycoprotein folding in the ER. Stable complexes between G1-G2 and calnexin or calreticulin could be immunoprecipitated after solubilization of virus-infected BHK21 cells with the detergents digitonin or Triton X-100. In addition, G1-G2-calnexin complexes could be recovered after solubilization with CHAPS (3-[(3-cholamidopropyl)-dimethylammonio]-1-propane sulfonate), while G1-G2-calreticulin complexes were not readily detected by using this detergent. Only endoglycosidase H-sensitive forms of G1 were found complexed with calnexin. Pulse-chase experiments showed that G1 and G2 associated with both chaperones transiently for up to 120 min. Sequential immunoprecipitations with anticalreticulin and anticalnexin antisera indicated that about 50% of newly synthesized G1 and G2 was associated with either calnexin or calreticulin. Our previous results have shown that newly synthesized G1 and G2 transiently interact also with the ER chaperone BiP and with protein disulfide isomerase (R. Persson and R. F. Pettersson, J. Cell Biol. 112:257-266, 1991). Taking all of this into consideration, we conclude that the folding of G1 and G2 in the ER is catalyzed by at least four different folding factors.  相似文献   

9.
Calnexin, calreticulin, and ERp57   总被引:3,自引:0,他引:3  
In eukaryotic cells, the endoplasmic reticulum (ER) plays an essential role in the synthesis and maturation of a variety of important secretory and membrane proteins. For glycoproteins, the ER possesses a dedicated maturation system, which assists folding and ensures the quality of final products before ER release. Essential components of this system include the lectin chaperones calnexin (CNX) and calreticulin (CRT) and their associated co-chaperone ERp57, a glycoprotein specific thiol-disulfide oxidoreductase. The significance of this system is underscored by the fact that CNX and CRT interact with practically all glycoproteins investigated to date, and by the debilitating phenotypes revealed in knockout mice deficient in either gene. Compared to other important chaperone systems, such as the Hsp70s, Hsp90s and GroEL/GroES, the principles whereby this system works at the molecular level are relatively poorly understood. However, recent structural and biochemical data have provided important new insights into this chaperone system and present a solid basis for further mechanistic studies.  相似文献   

10.
Substrate-specific requirements for UGT1-dependent release from calnexin   总被引:2,自引:0,他引:2  
Newly synthesized glycoproteins displaying monoglucosylated N-glycans bind to the endoplasmic reticulum (ER) chaperone calnexin, and their maturation is catalyzed by the calnexin-associated oxidoreductase ERp57. Folding substrates are eventually released from calnexin, and terminal glucoses are removed from N-glycans. The UDP-glucose:glycoprotein glucosyltransferase (UGT1, UGGT, GT) monitors the folding state of polypeptides released from calnexin and adds back a glucose residue on N-glycans of nonnative polypeptides, thereby prolonging retention in the calnexin chaperone system for additional folding attempts. Here we show that for certain newly synthesized glycoproteins UGT1 deletion has no effect on binding to calnexin. These proteins must normally complete their folding program in one binding event. Other proteins normally undergo multiple binding events, and UGT1 deletion results in their premature release from calnexin. For other proteins, UGT1 deletion substantially delays release from calnexin, unexpectedly showing that UGT1 activity might be required for a structural maturation needed for substrate dissociation from calnexin and export from the ER.  相似文献   

11.
Protein folding in the endoplasmic reticulum (ER) is error prone, and ER quality control (ERQC) processes ensure that only correctly folded proteins are exported from the ER. Glycoproteins can be retained in the ER by ERQC, and this retention contributes to multiple human diseases, termed ER storage diseases. UDP-glucose:glycoprotein glucosyltransferase (UGGT1) acts as a central component of glycoprotein ERQC, monoglucosylating deglucosylated N-glycans of incompletely folded glycoproteins and promoting subsequent reassociation with the lectin-like chaperones calreticulin and calnexin. The extent to which UGGT1 influences glycoprotein folding, however, has only been investigated for a few selected substrates. Using mouse embryonic fibroblasts lacking UGGT1 or those with UGGT1 complementation, we investigated the effect of monoglucosylation on the soluble/insoluble distribution of two misfolded α1-antitrypsin (AAT) variants responsible for AAT deficiency disease: null Hong Kong (NHK) and Z allele. Whereas substrate solubility increases directly with the number of N-linked glycosylation sites, our results indicate that additional solubility is conferred by UGGT1 enzymatic activity. Monoglucosylation-dependent solubility decreases both BiP association with NHK and unfolded protein response activation, and the solubility increase is blocked in cells deficient for calreticulin. These results suggest that UGGT1-dependent monoglucosylation of N-linked glycoproteins promotes substrate solubility in the ER.  相似文献   

12.
Jakob  CA; Burda  P; te Heesen  S; Aebi  M; Roth  J 《Glycobiology》1998,8(2):155-164
In higher eukaryotes a quality control system monitoring the folding state of glycoproteins is located in the ER and is composed of the proteins calnexin, calreticulin, glucosidase II, and UDP-glucose: glycoprotein glucosyltransferase. It is believed that the innermost glucose residue of the N- linked oligosaccharide of a glycoprotein serves as a tag in this control system and therefore performs an important function in the protein folding pathway. To address this function, we constructed Saccharomyces cerevisiae strains which contain nonglucosylated (G0), monoglucosylated (G1), or diglucosylated (G2) glycoproteins in the ER and used these strains to study the role of glucose residues in the ER processing of glycoproteins. These alterations of the oligosaccharide structure did not result in a growth phenotype, but the induction of the unfolded protein response upon treatment with DTT was much higher in G0 and G2 strains as compared to wild-type and G1 strains. Our results provide in vivo evidence that the G1 oligosaccharide is an active oligosaccharide structure in the ER glycoprotein processing pathway of S.cerevisiae. Furthermore, by analyzing N- linked oligosaccharides of the constructed strains we can directly show that no general glycoprotein glucosyltransferase exists in S. cerevisiae.   相似文献   

13.
The endoplasmic reticulum (ER) contains a stringent quality control system that ensures the correct folding of newly synthesized proteins to be exported via the secretory pathway. In this system UDP-Glc:glycoprotein glucosyltransferase (GT) serves as a glycoprotein specific folding sensor by specifically glucosylating N-linked glycans in misfolded glycoproteins thus retaining them in the calnexin/calreticulin chaperone cycle. To investigate how GT senses the folding status of glycoproteins, we generated RNase B heterodimers consisting of a folded and a misfolded domain. Only glycans linked to the misfolded domain were found to be glucosylated, indicating that the enzyme recognizes folding defects at the level of individual domains and only reglucosylates glycans directly attached to a misfolded domain. The result was confirmed with complexes of soybean agglutinin and misfolded thyroglobulin.  相似文献   

14.
Proteins entering the secretory pathway may be glycosylated upon transfer of an oligosaccharide (Glc3Man9GlcNAc2) from a dolichol-P-P derivative to nascent polypeptide chains in the lumen of the endoplasmic reticulum (ER). Oligosaccharides are then deglucosylated by glucosidases I and II (GII). Also in the ER, glycoproteins acquire their final tertiary structures, and species that fail to fold properly are retained and eventually degraded in the proteasome. It has been proposed that in mammalian cells the monoglucosylated oligosaccharides generated either by partial deglucosylation of the transferred compound or by reglucosylation of glucose-free oligosaccharides by the UDP-Glc:glycoprotein glucosyltransferase (GT) are recognized by ER resident lectins (calnexin and/or calreticulin). GT is a sensor of glycoprotein conformation as it only glucosylates misfolded species. The lectin-monoglucosylated oligosaccharide interaction would retain glycoproteins in the ER until correctly folded, and also facilitate their acquisition of proper tertiary structures by preventing aggregation. GII would liberate glycoproteins from the calnexin/calreticulin anchor, but species not properly folded would be reglucosylated by GT, and so continue to be retained by the lectins. Only when the protein becomes properly folded would it cease to be retained by the lectins. This review presents evidence suggesting that a similar quality control mechanism of glycoprotein folding is operative in Schizosaccharomyces pombe and that the mechanism in Saccharomyces cerevisiae probably differs substantially from that occurring in mammalian and Sch. pombe cells.  相似文献   

15.
The soluble, calcium-binding protein calreticulin shares high sequence homology with calnexin, a transmembrane chaperone of glycoprotein folding. Our experiments demonstrated that calreticulin, like calnexin, associated transiently with numerous newly synthesized proteins in the endoplasmic reticulum. The population of proteins that bound to calreticulin was partially overlapping with those that bound to calnexin. Hemagglutinin (HA) of influenza virus was shown to associate with both calreticulin and calnexin. Using HA as a model substrate, it was found that both calreticulin- and calnexin-bound HA corresponded primarily to incompletely disulfide-bonded folding intermediates and conformationally trapped forms. Binding of all substrates was oligosaccharide-dependent and required the trimming of glucose residues from asparagine-linked core glycans by glucosidases I and II. In vitro, alpha-mannosidase digestion of calreticulin-bound HA indicated that calreticulin was specific for monoglucosylated glycans. Thus, calreticulin appeared to be a lectin with similar oligosaccharide specificity as its membrane-bound homologue, calnexin. Both are therefore likely to play an important role in glycoprotein maturation and quality control in the endoplasmic reticulum.  相似文献   

16.
Bosis E  Nachliel E  Cohen T  Takeda Y  Ito Y  Bar-Nun S  Gutman M 《Biochemistry》2008,47(41):10970-10980
The calnexin/calreticulin cycle is a quality control system responsible for promoting the folding of newly synthesized glycoproteins entering the endoplasmic reticulum (ER). The association of calnexin and calreticulin with the glycoproteins is regulated by ER glucosidase II, which hydrolyzes Glc 2Man X GlcNAc 2 glycans to Glc 1Man X GlcNAc 2 and further to Glc 0Man X GlcNAc 2 ( X represents any number between 5 and 9). To gain new insights into the reaction mechanism of glucosidase II, we developed a kinetic model that describes the interactions between glucosidase II, calnexin/calreticulin, and the glycans. Our model accurately reconstructed the hydrolysis of glycans with nine mannose residues and glycans with seven mannose residues, as measured by Totani et al. [Totani, K., Ihara, Y., Matsuo, I., and Ito, Y. (2006) J. Biol. Chem. 281, 31502-31508]. Intriguingly, our model predicted that glucosidase II was inhibited by its nonglucosylated end products, where the inhibitory effect of Glc 0Man 7GlcNAc 2 was much stronger than that of Glc 0Man 9GlcNAc 2. These predictions were confirmed experimentally. Moreover, our model suggested that glycans with a different number of mannose residues can be equivalent substrates of glucosidase II, in contrast to what had been previously thought. We discuss the possibility that nonglucosylated glycans, existing in the ER, might regulate the entry of newly synthesized glycoproteins into the calnexin/calreticulin cycle. Our model also shows that glucosidase II does not interact with monoglucosylated glycans while they are bound to calnexin or calreticulin.  相似文献   

17.
Newly synthesized glycoproteins interact during folding and quality control in the ER with calnexin and calreticulin, two lectins specific for monoglucosylated oligosaccharides. Binding and release are regulated by two enzymes, glucosidase II and UDP-Glc:glycoprotein:glycosyltransferase (GT), which cyclically remove and reattach the essential glucose residues on the N-linked oligosaccharides. GT acts as a folding sensor in the cycle, selectively reglucosylating incompletely folded glycoproteins and promoting binding of its substrates to the lectins. To investigate how nonnative protein conformations are recognized and directed to this unique chaperone system, we analyzed the interaction of GT with a series of model substrates with well defined conformations derived from RNaseB. We found that conformations with slight perturbations were not reglucosylated by GT. In contrast, a partially structured nonnative form was efficiently recognized by the enzyme. When this form was converted back to a nativelike state, concomitant loss of recognition by GT occurred, reproducing the reglucosylation conditions observed in vivo with isolated components. Moreover, fully unfolded conformers were poorly recognized. The results indicated that GT is able to distinguish between different nonnative conformations with a distinct preference for partially structured conformers. The findings suggest that discrete populations of nonnative conformations are selectively reglucosylated to participate in the calnexin/calreticulin chaperone pathway.  相似文献   

18.
Calnexin and calreticulin are homologous molecular chaperones that promote proper folding, oligomeric assembly, and quality control of newly synthesized glycoproteins in the endoplasmic reticulum (ER). Both are lectins that bind to substrate glycoproteins that have monoglucosylated N-linked oligosaccharides. Their binding to newly translated influenza virus hemagglutinin (HA), and various mutants thereof, was analyzed in microsomes after in vitro translation and expression in live CHO cells. A large fraction of the HA molecules was found to occur in ternary HA– calnexin–calreticulin complexes. In contrast to calnexin, calreticulin was found to bind primarily to early folding intermediates. Analysis of HA mutants with different numbers and locations of N-linked glycans showed that although the two chaperones share the same carbohydrate specificity, they display distinct binding properties; calreticulin binding depends on the oligosaccharides in the more rapidly folding top/hinge domain of HA whereas calnexin is less discriminating. Calnexin's binding was reduced if the HA was expressed as a soluble anchor-free protein rather than membrane bound. When the co- and posttranslational folding and trimerization of glycosylation mutants was analyzed, it was observed that removal of stem domain glycans caused accelerated folding whereas removal of the top domain glycans (especially the oligosaccharide attached to Asn81) inhibited folding. In summary, the data established that individual N-linked glycans in HA have distinct roles in calnexin/calreticulin binding and in co- and posttranslational folding.  相似文献   

19.
The thiol oxidoreductase endoplasmic reticulum (ER)p57 interacts with newly synthesized glycoproteins through ternary complexes with the chaperones/lectins calnexin or calreticulin. On proteasomal inhibition calnexin and calreticulin concentrate in the pericentriolar endoplasmic reticulum-derived quality control compartment that we recently described. Surprisingly, ERp57 remained in an endoplasmic reticulum pattern. Using asialoglycoprotein receptor H2a and H2b as models, we determined in pulse-chase experiments that both glycoproteins initially bind to calnexin and ERp57. However, H2b, which will exit to the Golgi, dissociated from calnexin and remained bound for a longer period to ERp57, whereas the opposite was true for the endoplasmic reticulum-associated degradation substrate H2a that will go to the endoplasmic reticulum-derived quality control compartment. At 15 degrees C, ERp57 colocalized with H2b adjacent to an endoplasmic reticulum-Golgi intermediate compartment marker. Posttranslational inhibition of glucose excision prolonged association of H2a precursor to calnexin but not to ERp57. Preincubation with a low concentration (15 microg/ml) of the glucosidase inhibitor castanospermine prevented the association of H2a to ERp57 but not to calnexin. This low concentration of castanospermine accelerated the degradation of H2a, suggesting that ERp57 protects the glycoprotein from degradation and not calnexin. Our results suggest an early chaperone-mediated sorting event with calnexin being involved in the quality control retention of molecules bound for endoplasmic reticulum-associated degradation and ERp57 giving initial protection from degradation and later assisting the maturation of molecules that will exit to the Golgi.  相似文献   

20.
Calnexin and calreticulin are membrane-bound and soluble chaperones, respectively, of the endoplasmic reticulum (ER) which interact transiently with a broad spectrum of newly synthesized glycoproteins. In addition to sharing substantial sequence identity, both calnexin and calreticulin bind to monoglucosylated oligosaccharides of the form Glc(1)Man(5-9)GlcNAc(2), interact with the thiol oxidoreductase, ERp57, and are capable of acting as chaperones in vitro to suppress the aggregation of non-native proteins. To understand how these diverse functions are coordinated, we have localized the lectin, ERp57 binding, and polypeptide binding sites of calnexin and calreticulin. Recent structural studies suggest that both proteins consist of a globular domain and an extended arm domain comprised of two sequence motifs repeated in tandem. Our results indicate that the primary lectin site of calnexin and calreticulin resides within the globular domain, but the results also point to a much weaker secondary site within the arm domain which lacks specificity for monoglucosylated oligosaccharides. For both proteins, a site of interaction with ERp57 is centered on the arm domain, which retains approximately 50% of binding compared with full-length controls. This site is in addition to a Zn(2+)-dependent site located within the globular domain of both proteins. Finally, calnexin and calreticulin suppress the aggregation of unfolded proteins via a polypeptide binding site located within their globular domains but require the arm domain for full chaperone function. These findings are integrated into a model that describes the interaction of glycoprotein folding intermediates with calnexin and calreticulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号