首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 176 毫秒
1.
Impaired handling of apoptotic cells has been suggested as an important factor in the development of systemic lupus erythematosus (SLE), and a role for complement in the removal of apoptotic cells was shown recently. We studied the in vitro function of macrophages from 40 patients with SLE and their matched controls in the removal of heterologous apoptotic cells opsonized by iC3b. Interaction index of apoptotic cells opsonized by iC3b was significantly lower in patients with SLE and averaged 71% +/- 37 of that of healthy individuals (p < 0.002) and 69% +/- 35 of patients with rheumatoid arthritis (p < 0.007). SLE patients had increased apoptosis of both freshly isolated monocytes (p < 0.001) and maturing macrophages (p < 0.04) that led to decreased density of monocyte-derived macrophages. Apoptosis was inhibited by adding soluble Fas receptor indicating Fas-mediated apoptosis. As demonstrated in both healthy controls and patients with SLE, decreased macrophage density by itself caused significant decreased uptake of apoptotic cells by the remaining macrophages. Maintaining normal density in SLE patients either by an increased initial density or by using soluble Fas restored the interaction capacity of the individual macrophages in the majority of patients. We concluded that impaired in vitro interaction of iC3b-opsonized apoptotic cells with macrophages from patients with SLE was mainly associated with Fas-dependent accelerated apoptosis of the monocytes/macrophages. Accelerated apoptosis of phagocytes may represent a novel in vitro mechanism of impairment of interaction with apoptotic cells that, apart from reducing the number of professional phagocytes, alters the function of the remaining macrophages.  相似文献   

2.
Patients with active systemic lupus erythematosus (SLE) have signs of an ongoing IFN-alpha production, that may be of pathogenic significance in the disease. We previously showed that SLE patients have an IFN-alpha-inducing factor in blood, probably consisting of complexes containing anti-DNA Abs and immunostimulatory DNA. The DNA component could be derived from apoptotic cells, because SLE patients have been reported to have both increased apoptosis and reduced clearance of apoptotic cell material. In the present study, we therefore investigated whether apoptotic cells, together with IgG from SLE patients, could act as an IFN-alpha inducer in normal PBMC in vitro. We found that apoptotic cells of the myeloid leukemia cell line U937 as well as four other cell lines (MonoMac6, H9, Jurkat, U266) could induce IFN-alpha production in PBMC when combined with IgG from SLE patients. The IFN-alpha production by PBMC was much enhanced when PBMC were costimulated by IFN-alpha2b. The ability of IgG from different SLE patients to promote IFN-alpha induction by apoptotic U937 cells was associated with the presence of anti-ribonucleoprotein Abs, but not clearly with occurrence of anti-DNA Abs. These results suggest that apoptotic cells in the presence of autoantibodies can cause production of a clearly immunostimulatory cytokine, which is IFN-alpha. This mechanism for induction of IFN-alpha production could well be operative also in vivo, explain the IFN-alpha production seen in SLE patients, and be important in the pathogenesis of SLE.  相似文献   

3.
Individuals with systemic lupus erythematosus show evidence of a significant increase in monocyte apoptosis. This process is mediated, at least in part, by an autoreactive T cell subset that kills autologous monocytes in the absence of nominal Ag. We have investigated the apoptotic pathways involved in this T cell-mediated process. Expression of the apoptotic ligands TRAIL, TNF-like weak inducer of apoptosis (TWEAK), and Fas ligand on lupus T cells was determined, and the role of these molecules in the monocyte apoptotic response was examined. We report that these apoptotic ligands mediate the autologous monocyte death induced by lupus T cells and that this cytotoxicity is associated with increased expression of these molecules on activated T cells, rather than with an increased susceptibility of lupus monocytes to apoptosis induced by these ligands. These results define novel mechanisms that contribute to increased monocyte apoptosis characterizing patients with lupus. We propose that this mechanism could provide a source of potentially antigenic material for the autoimmune response and interfere with normal clearing mechanisms.  相似文献   

4.
Xu L  Zhang L  Yi Y  Kang HK  Datta SK 《Nature medicine》2004,10(4):411-415
Autoimmune T-helper cells drive pathogenic autoantibody production in systemic lupus erythematosus (SLE), but the mechanisms maintaining those T cells are unknown. Autoreactive T cells are normally eliminated by functional inactivation (anergy) and activation-induced cell death (AICD) or apoptosis through death receptor (Fas) signaling. However, mutations in the genes encoding Fas and its ligand (FasL) are rare in classical SLE. By gene microarray profiling, validated by functional and biochemical studies, we establish here that activated T cells of lupus patients resist anergy and apoptosis by markedly upregulating and sustaining cyclooxygenase-2 (COX-2) expression. Inhibition of COX-2 caused apoptosis of the anergy-resistant lupus T cells by augmenting Fas signaling and markedly decreasing the survival molecule c-FLIP (cellular homolog of viral FLICE inhibitory protein). Studies with COX-2 inhibitors and Cox-2-deficient mice confirmed that this COX-2/FLIP antiapoptosis program is used selectively by anergy-resistant lupus T cells, and not by cancer cells or other autoimmune T cells. Notably, the gene encoding COX-2 is located in a lupus-susceptibility region on chromosome 1. We also found that only some COX-2 inhibitors were able to suppress the production of pathogenic autoantibodies to DNA by causing autoimmune T-cell apoptosis, an effect that was independent of prostaglandin E(2) (PGE(2)). These findings could be useful in the design of lupus therapies.  相似文献   

5.
Wang H  Xu J  Ji X  Yang X  Sun K  Liu X  Shen Y 《Cellular immunology》2005,235(2):117-121
To study the apoptosis of lymphocyte subpopulations in systemic lupus erythematosus (SLE) patients and the possible role of IL-10 in this apoptosis involved in the pathogenesis of SLE, three color fluorescence and flow cytometry were used to investigate the early apoptosis of lymphocyte subsets from freshly separated or cultured peripheral blood mononuclear cells (PBMCs). ELISA was employed to detect the levels of IL-10 in serum and the levels of sFas and sFasL in cultured PBMC supernatants, and the results of sFas and sFasL were confirmed by real-time PCR of Fas and FasL mRNA. The results showed that in cells from SLE patients, the apoptosis of CD3+, CD4+, and CD8+ T cells was distinctly increased, and the percentage of CD4+ cells and the CD4/CD8 ratio was significantly decreased, as compared with normal controls. The apoptosis of T lymphocytes cultured with SLE serum was markedly higher than that of cells cultured with control's serum. Blockade of interleukin-10 (IL-10) activation by an anti-IL-10 antibody reduced the SLE serum induced apoptosis of CD4+ and CD8+ T cells. The levels of sFas and sFasL in the culture supernatant and Fas and FasL mRNA expressions in cultured cells were significantly higher in the SLE serum-cultured groups, but decreased evidently in the presence of the anti-IL-10 antibody. Above findings suggested that SLE cells showed abnormally high apoptosis of T lymphocytes, especially of the CD4+ subpopulation, resulting in a decreased CD4/CD8 ratio. The high percentage of apoptotic T cells in SLE patients may be related to the high levels of IL-10 in SLE serum, as IL-10 may induce the abnormally activated T cells to trigger apoptosis via the Fas-FasL pathway.  相似文献   

6.
OBJECTIVES: To explore the relationships between Fas-FasL-mediated signaling pathway and apoptosis disturbance of T lymphocyte subset in patients with SLE. METHODS: Flow cytometry was used to determine the percentage of apoptotic lymphocytes and necrotic lymphocytes by AnnexinV-FITC/PI double staining. Cell surface expression rates of Fas, FasL, and intracellular expression rates of activated caspase-3 were evaluated by two-color flow cytometry analysis in peripheral T lymphocyte subsets of SLE patients with inactive disease (n=22) and with active disease (n=17). The serum concentration of anti-nucleosome antibodies in SLE patients were assayed by ELISA immunoassay methods. Health volunteers (n=13) served as controls. RESULTS: The percentage of early apoptotic cells was enhanced in patients with active disease (P=0.001, vs. control) and in patients with inactive disease (P=0.004, vs. control). Compared with health control, the percentage of necrotic cells was significant higher in patients with active disease (P=0.001). The percentages of CD4(+)T cells expressing Fas (P=0.023, vs. control) and FasL (P=0.001, vs. control) were increased in patients with active disease. But there were no obvious differences of expression rates of Fas and FasL on T cell subset between two disease groups (P>0.05). In patients with active disease the percentage of CD4(+)T cells or CD8(+)T cells expressing intracellular activated caspase-3 significantly increased compared to inactive disease patients (P=0.018, P=0.027, respectively) and health controls (P=0.001, P=0.001, respectively). The serum concentration of anti-nucleosome antibodies was strikingly higher in patients with active disease (P=0.002, vs. patients with inactive disease; P=0.001, vs. control, respectively), however, the serum concentration of anti-nucleosome antibodies was not obviously different between patients with inactive disease and health control group (P=0.473). The percentage of apoptotic cells correlated with the serum concentration of anti-nucleosome antibodies in SLE patients (r(s)=0.350, P=0.031). CONCLUSIONS: Apoptosis of T lymphocyte subset in SLE patients increases. CD4(+)T cells are a state of active apoptosis. Fas/FasL-mediated apoptotic pathways are especially important for CD4(+)T cells undergoing apoptosis in SLE patients with active disease. Increased Fas expression results in a higher susceptibility to Fas-mediated apoptosis, which contributes to the increased levels of intracellular activated caspase-3 and accelerates apoptosis of T lymphocytes. The degree of lymphocytic apoptosis disturbance correlates with the level of anti-nucleosome antibodies in the circulation. Acceleration of lymphocytic apoptosis plays important roles in immune pathologic injury and immune regulation dysfunction.  相似文献   

7.
Systemic lupus erythematosus (SLE) is a common autoimmune disease with complex etiology. Recently, a possible role of apoptotic cells in its pathogenesis has been suggested. This study is to evaluate the expression of Fas antigen on peripheral blood lymphocytes (PBLs) in SLE, to determine whether membrane Fas (mFas) has a role in the organ damage in SLE and to explore its relationship with the early apoptosis of the PBLs in SLE. Flow cytometry was used to evaluate the expression of mFas on PBLs in 68 Chinese SLE patients and 37 healthy controls. Systemic lupus international collaborative clinics/american colleges of rheumatology damage index (SDI) scores were calculated to further estimate the relationship of the expression of mFas with disease severity. Results showed that mFas expression levels were significantly higher (P < 0.01) among SLE patients than those in healthy controls. Higher (P = 0.01) expressions of mFas were found in patients with SDI scores ≥ as compared to those with SDI scores <3. Patients with neuropsychiatric or renal disease had a higher expression of mFas than those without neuropsychiatric (P = 0.03) or renal disease (P = 0.01). In addition, the expression levels had a positive (r = 0.381, P < 0.01) correlation with the early apoptosis rate of PBLs in SLE patients. Taken together, our study showed that Fas-expressing PBLs were increased in SLE patients, especially in patients with higher SDI score, and the expression levels of mFas were correlated to the organ damage and lymphocytes apoptosis.  相似文献   

8.
Humans and mice with systemic lupus erythematosus (SLE) and related autoimmune diseases have reduced numbers of NK T cells. An association between NK T cell deficiency and autoimmune disease has been identified. However, the mechanisms for reduction of NK T cell number in patients with SLE are unknown. In the present study we report that NK T cells from active SLE patients are highly sensitive to anti-CD95-induced apoptosis compared with those from normal subjects and inactive SLE patients. CD226 expression is deficient on NK T cells from active SLE patients. The expression of one antiapoptotic member protein, survivin, is found to be selectively deficient in freshly isolated NK T cells from active SLE patients. CD226 preactivation significantly up-regulates survivin expression and activation, which can rescue active SLE NK T cells from anti-CD95-induced apoptosis. In transfected COS7 cells, we confirm that anti-CD95-mediated death signals are inhibited by activation of the CD226 pathway through stabilization of caspase-8 and caspase-3 and through activation of survivin. We therefore conclude that deficient expression of CD226 and survivin in NK T cells from active SLE is a molecular base of high sensitivity of the cells to anti-CD95-induced apoptosis. These observations offer a potential explanation for high apoptotic sensitivity of NK T cells from active SLE, and provide a new insight into the mechanism of reduction of NK T cell number in SLE and understanding the association between NK T cell deficiency and autoimmune diseases.  相似文献   

9.
Apoptotic cells are thought to play an essential role in the pathogenesis of systemic lupus erythematosus (SLE). We hypothesise that delayed or altered clearance of apoptotic cells after UV irradiation will lead to inflammation in the skin of SLE patients. Fifteen SLE patients and 13 controls were irradiated with two minimal erythemal doses (MEDs) of ultraviolet B light (UVB). Subsequently, skin biopsies were analysed (immuno)histologically, over 10 days, for numbers of apoptotic cells, T cells, macrophages, and deposition of immunoglobulin and complement. Additionally, to compare results with cutaneous lesions of SLE patients, 20 biopsies of lupus erythematosus (LE) skin lesions were analysed morphologically for apoptotic cells and infiltrate. Clearance rate of apoptotic cells after irradiation did not differ between patients and controls. Influx of macrophages in dermal and epidermal layers was significantly increased in patients compared with controls. Five out of 15 patients developed a dermal infiltrate that was associated with increased epidermal influx of T cells and macrophages but not with numbers of apoptotic cells or epidermal deposition of immunoglobulins. Macrophages were ingesting multiple apoptotic bodies. Inflammatory lesions in these patients were localised near accumulations of apoptotic keratinocytes similar as was seen in the majority of LE skin lesions. In vivo clearance rate of apoptotic cells is comparable between SLE patients and controls. However, the presence of inflammatory lesions in the vicinity of apoptotic cells, as observed both in UVB-induced and in LE skin lesions in SLE patients, suggests that these lesions result from an inflammatory clearance of apoptotic cells.  相似文献   

10.
Apoptotic cells are thought to play an essential role in the pathogenesis of systemic lupus erythematosus (SLE). We hypothesise that delayed or altered clearance of apoptotic cells after UV irradiation will lead to inflammation in the skin of SLE patients. Fifteen SLE patients and 13 controls were irradiated with two minimal erythemal doses (MEDs) of ultraviolet B light (UVB). Subsequently, skin biopsies were analysed (immuno)histologically, over 10 days, for numbers of apoptotic cells, T cells, macrophages, and deposition of immunoglobulin and complement. Additionally, to compare results with cutaneous lesions of SLE patients, 20 biopsies of lupus erythematosus (LE) skin lesions were analysed morphologically for apoptotic cells and infiltrate. Clearance rate of apoptotic cells after irradiation did not differ between patients and controls. Influx of macrophages in dermal and epidermal layers was significantly increased in patients compared with controls. Five out of 15 patients developed a dermal infiltrate that was associated with increased epidermal influx of T cells and macrophages but not with numbers of apoptotic cells or epidermal deposition of immunoglobulins. Macrophages were ingesting multiple apoptotic bodies. Inflammatory lesions in these patients were localised near accumulations of apoptotic keratinocytes similar as was seen in the majority of LE skin lesions. In vivo clearance rate of apoptotic cells is comparable between SLE patients and controls. However, the presence of inflammatory lesions in the vicinity of apoptotic cells, as observed both in UVB-induced and in LE skin lesions in SLE patients, suggests that these lesions result from an inflammatory clearance of apoptotic cells.  相似文献   

11.
12.
Sule S  Rosen A  Petri M  Akhter E  Andrade F 《PloS one》2011,6(3):e17495
Monocytes are a key component of the innate immune system involved in the regulation of the adaptive immune response. Previous studies have focused on apoptotic cell clearance abnormalities in systemic lupus erythematosus (SLE) monocytes. However, whether SLE monocytes might express unique patterns of cytokine secretion in response to apoptotic cells is still unknown. Here, we used monocytes from healthy controls and SLE patients to evaluate the production of TNF-α and TGF-β in response to apoptotic cells. Upon recognition of apoptotic material, monocytes from healthy controls showed prominent TGF-β secretion (mean ± SD: 824.6±144.3 pg/ml) and minimal TNF-α production (mean ± SD: 32.6±2.1 pg/ml). In contrast, monocytes from SLE patients had prominent TNF-α production (mean ± SD: 302.2±337.5 pg/ml) and diminished TGF-β secretion (mean ± SD: 685.9±615.9 pg/ml), a difference that was statistically significant compared to normal monocytes (p≤10−6 for TNF-α secretion, and p = 0.0031 for TGF-β, respectively). Interestingly, the unique cytokine response by SLE monocytes was independent of their phagocytic clearance efficiency, opsonizing autoantibodies and disease activity. We further showed that nucleic acids from apoptotic cells play important role in the induction of TNF-α by lupus monocytes. Together, these observations suggest that, in addition to potential clearance defects, monocytes from SLE patients have an abnormal balance in the secretion of anti- and pro-inflammatory cytokines in response to apoptotic cells. Since the abnormal cytokine response to apoptotic material in SLE is not related to disease activity and opsonizing autoantibodies, it is possible that this response might be an intrinsic property of lupus monocytes. The studies focus attention on toll-like receptors (TLRs) and their downstream pathways as mediators of this response.  相似文献   

13.
Unstimulated human peripheral blood mononuclear cells (MNC) underwent death during incubation in vitro. According to morphological criteria the type of death was identified as apoptosis. There was a good correlation between a fraction of apoptotic cells qualified morphologically, and fraction of "apoptotic" comets. The use of DNA-comets for studying the spontaneous death in vitro of MNC from patients with systemic lupus erythematosus (SLE) showed that 24 h after isolation cells from SLE patients demonstrated a higher level of apoptosis than MNC from normal donors. It is likely that the increased apoptosis of SLE-MNC in vitro may reflect changes occurring in those cells in vivo which are bound with pathogenesis of disease. In this context the comet assay may be promising in diagnostics and monitoring of therapeutic treatments.  相似文献   

14.
Induction of Fas expression by DNA-damaging agents is dependent on the expression of functional p53, and has been suggested to play an important role in apoptosis induction. JNK (c-Jun N-terminal kinase), which is capable of phosphorylating p53, is also involved in apoptotic signaling induced by various apoptotic stimuli. Here, we report that although Fas induction is closely linked to the expression of wild type p53, it is not correlated with JNK activation induced by apoptotic stimuli. JNK activation does not necessarily lead to Fas expression, even in cells containing wild type p53. In addition, Fas expression can be induced without significant JNK activation. Furthermore, induction of Fas expression is not sufficient for apoptosis induction; however, it may sensitize cells to Fas-ligation induced apoptosis.  相似文献   

15.
The cell surface Fas antigen transducts an apoptotic signal by its crosslinking with Fas ligand or anti-Fas antibody in a variety of human cultured cells. In this study, we examined the expression of Fas antigen and its mediation of apoptosis in six human colorectal carcinoma cell lines. A flow cytometric analysis revealed that LoVo, DLD-1, WiDr and SW837 cell lines showed higher expression levels of Fas antigen, in contrast to lower expression in COLO201 and COLO320DM. Interferon- enhanced the expression of Fas antigen in all of the cell lines examined. Both Fas ligand and Fas-associated phosphatase-1 (FAP-1) were expressed only in COLO320DM. Anti-Fas antibody induced apoptosis in LoVo carrying wild-type p53 gene, but not in the other five cell lines carrying mutated p53 gene. The transfection of wild-type p53 gene using an adenovirous vector upregulated P53 protein in WiDr and SW837 cells, both of which showed, however, no increase in apoptotic cells by anti-Fas antibody treatment. These results indicated that (1) Fas antigen was variably expressed, regardless of the p53 gene status and (2) the susceptibility to anti-Fas antibody-mediated apoptosis did not correlate to Fas, Fas ligand or FAP-1 expression levels. Therefore, we conclude that wild-type P53 expression might not necessarily be essential for Fas-mediated apoptosis in human colorectal carcinoma cell lines.  相似文献   

16.
Fas engagement accelerates liver regeneration after partial hepatectomy   总被引:8,自引:0,他引:8  
Fas (CD95) is a receptor involved in induction of apoptotic cell death of Fas-bearing cells, including hepatocytes and T cells. Injection of Fas-specific antibodies into mice leads to fulminant hepatic failure and death. Fas also transduces growth-promoting signals in proliferating T cells, fibroblasts and some tumor cells. Here we show that partial hepatectomy, which triggers the immediate onset of liver regeneration, protected mice against the lethal effects of Fas-specific antibodies and prevented hepatocyte apoptosis in response to Fas engagement in vivo. Furthermore, Fas engagement accelerated liver regeneration after partial hepatectomy. Liver regeneration kinetics were delayed in mutant mice with decreased cell surface Fas expression (lpr mice). In contrast, regeneration was not delayed in lpr-cg mutant mice, which have a Fas mutation that prevents Fas-induced death but not Fas-dependent proliferative stimulation. Our results indicate that Fas engagement on cells in regenerating or healing tissues may promote cell growth.  相似文献   

17.
18.
Defective clearance of apoptotic cells has been shown in systemic lupus erythematosus (SLE) and is postulated to enhance autoimmune responses by increasing access to intracellular autoantigens. Until now, research has emphasized inherited rather than acquired impairment of apoptotic cell engulfment in the pathogenesis of SLE. In this study, we confirm previous results that efficient removal of apoptotic cells (efferocytosis) is bolstered in the presence of wild-type mouse serum, through the C3 deposition on the apoptotic cell surface. In contrast, sera from three mouse models of SLE, Mer(KD), MRL(lpr), and New Zealand Black/WF1 did not support and in fact actively inhibited apoptotic cell uptake. IgG autoantibodies were responsible for the inhibition, through the blockade of C3 recognition by macrophages. Consistent with this, IgG removal reversed the inhibitory activity within autoimmune serum, and purified autoimmune IgG blocked both the detection of C3 on apoptotic cells and C3-dependent efferocytosis. Sera from SLE patients demonstrated elevated anti-C3b IgG that blocked detection of C3 on apoptotic cells, activity that was not found in healthy controls or patients with rheumatoid arthritis, nor in mice prior to the onset of autoimmunity. We propose that the suppression of apoptotic cell disposal by Abs against deposited C3 may contribute to increasing severity and/or exacerbations in SLE.  相似文献   

19.
An ongoing production of IFN-alpha may be of etiopathogenic significance in systemic lupus erythematosus (SLE). It may be due to the natural IFN-producing cells (NIPC), also termed plasmacytoid dendritic cells (PDC), activated by immune complexes that contain nucleic acids derived from apoptotic cells. We here examined the role of FcgammaR in the IFN-alpha production in vitro by PBMC induced by the combination of apoptotic U937 cells and autoantibody-containing IgG from SLE patients (SLE-IgG). The Fc portion of the SLE-IgG was essential to induce IFN-alpha production, because Fab fragments or F(ab')(2) were ineffective. Normal, especially heat-aggregated, IgG inhibited the IFN-alpha production, suggesting a role for FcgammaR on PBMC. Using blocking anti-FcgammaR Abs, the FcgammaRIIa,c (CD32) but not FcgammaRI or FcgammaRIII were shown to be involved in the IFN-alpha induction by apoptotic cells combined with SLE-IgG, but not by HSV or CpG DNA. In contrast, the action of all of these inducers was inhibited by the anti-FcgammaRIIa,b,c mAb AT10 or heat-aggregated IgG. Flow cytometric analysis revealed that approximately 50% of the BDCA-2-positive PBMC, i.e., NIPC/PDC, expressed low but significant levels of FcgammaRII, as did most of the actual IFN-alpha producers activated by HSV. RT-PCR applied to NIPC/PDC purified by FACS demonstrated expression of FcgammaRIIa, but not of FcgammaRIIb or FcgammaRIIc. We conclude that FcgammaRIIa on NIPC/PDC is involved in the activation of IFN-alpha production by interferogenic immune complexes, but may also mediate inhibitory signals. The FcgammaRIIa could therefore have a key function in NIPC/PDC and be a potential therapeutic target in SLE.  相似文献   

20.
Autoimmune glomerulonephritis is a common manifestation of systemic lupus erythematosus (SLE). In this study, we show that mice lacking macrophage expression of the heterodimeric nuclear receptors PPARγ or RXRα develop glomerulonephritis and autoantibodies to nuclear Ags, resembling the nephritis seen in SLE. These mice show deficiencies in phagocytosis and clearance of apoptotic cells, and they are unable to acquire an anti-inflammatory phenotype upon feeding of apoptotic cells, which is critical for the maintenance of self-tolerance. These results demonstrate that stimulation of PPARγ and RXRα in macrophages facilitates apoptotic cell engulfment, and they provide a potential strategy to avoid autoimmunity against dying cells and to attenuate SLE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号