首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Wide-compatibility (WC) is one of the most important traits in rice, which can overcome the fertility barrier in the indica/japonica hybrids, and hence to make it possible to utilize the higher yield potential of inter-subspecific hybrids. The S 5 n gene located on chromosome 6 has been previously reported to be responsible for the wide-compatibility in rice. Here we report the precise location of the S 5 n gene. In the first-pass mapping, the S 5 n gene was restricted within a 200 kb region by using a population of 242 isogenic lines in combination with high-density markers developed in the S 5 region. In the fine mapping, the S 5 region was further saturated with newly developed markers and more isogenic lines (549 in total) were investigated. Eventually, the S 5 n gene was mapped within a 50 kb region delimited by the left marker J13 and the right marker J17. One BAC clone screened from the BAC library of the WC rice variety 02428 covered the whole S 5 region. Sequence analysis of the 50 kb region revealed two candidate genes, coding an aspartyl protease and a hypothetical protein. This result would greatly accelerate both cloning and marker-assisted selection of this important S 5 n gene. Qing Ji and Jufei Lu have contributed equally to this paper.  相似文献   

2.
The lipase Lip2 of the edible basidiomycete, Pleurotus sapidus, is an extracellular enzyme capable of hydrolysing xanthophyll esters with high efficiency. The gene encoding Lip2 was expressed in Escherichia coli TOP10 using the gene III signal sequence to accumulate proteins in the periplasmatic space. The heterologous expression under control of the araBAD promoter led to the high level production of recombinant protein, mainly as inclusion bodies, but partially in a soluble and active form. A fusion with a C-terminal His tag was used for purification and immunochemical detection of the target protein. This is the first example of a heterologous expression and periplasmatic accumulation of a catalytically active lipase from a basidiomycete fungus.  相似文献   

3.
4.

Key message

A novel rust resistance gene, R 15 , derived from the cultivated sunflower HA-R8 was assigned to linkage group 8 of the sunflower genome using a genotyping-by-sequencing approach. SNP markers closely linked to R 15 were identified, facilitating marker-assisted selection of resistance genes.

Abstract

The rust virulence gene is co-evolving with the resistance gene in sunflower, leading to the emergence of new physiologic pathotypes. This presents a continuous threat to the sunflower crop necessitating the development of resistant sunflower hybrids providing a more efficient, durable, and environmentally friendly host plant resistance. The inbred line HA-R8 carries a gene conferring resistance to all known races of the rust pathogen in North America and can be used as a broad-spectrum resistance resource. Based on phenotypic assessments of 140 F2 individuals derived from a cross of HA 89 with HA-R8, rust resistance in the population was found to be conferred by a single dominant gene (R 15 ) originating from HA-R8. Genotypic analysis with the currently available SSR markers failed to find any association between rust resistance and any markers. Therefore, we used genotyping-by-sequencing (GBS) analysis to achieve better genomic coverage. The GBS data showed that R 15 was located at the top end of linkage group (LG) 8. Saturation with 71 previously mapped SNP markers selected within this region further showed that it was located in a resistance gene cluster on LG8, and mapped to a 1.0-cM region between three co-segregating SNP makers SFW01920, SFW00128, and SFW05824 as well as the NSA_008457 SNP marker. These closely linked markers will facilitate marker-assisted selection and breeding in sunflower.
  相似文献   

5.
Efficient transformation of leaf disc-derived callus of Codonopsis lanceolata was obtained using Agrobacterium tumefaciens strain LBA4404 harboring a binary vector, pYBI121, that carries the neomycin phosphotransferase (npt II) gene as a selectable marker. The green shoots recovered from agroinfected explants on selection medium (containing 0.1 mg/l α-naphthaleneacetic acid (NAA), 1 mg/l 6-benzylaminopurine (BAP), 100 mg/l kanamycin, and 250 mg/l cefotaxime) were rooted on Murashige and Skoog (MS) medium supplemented with 2 mg/l IBA and 10 mg/l kanamycin. To optimize the transformation conditions, several factors were assessed, including the co-cultivation period, the duration of pre- and post-culture in darkness and light, the kanamycin concentration, and the Agrobacterium densities. We produced transgenic Codonopsis lanceolata overexpressing γ-tocopherol methyltransferase (γ-TMT) by this protocol. Moreover, the α-tocopherol content of the plants was enhanced by the overexpression of this gene. Bimal Kumar Ghimire and Eun Soo Seong contributed equally to this work.  相似文献   

6.
To improve ethanol production in Saccharomyces cerevisiae, two yeast strains were constructed. In the mutant, KAM-4, the GPD1 gene, which encodes a glycerol 3-phosphate dehydrogenase of S. cerevisiae to synthesize glycerol, was deleted. The mutant KAM-12 had the GLT1 gene (encodes glutamate synthase) placed under the PGK1 promoter while harboring the GPD1 deletion. Notably, overexpression of GLT1 by the PGK1 promoter along with GPD1 deletion resulted in a 10.8% higher ethanol production and a 25.0% lower glycerol formation compared to the wild type in anaerobic fermentations. The growth rate of KAM-4 was slightly lower than that of the wild type under the exponential phase whereas KAM-12 and the wild type were indistinguishable in the biomass concentration at the end of growth period. Meanwhile, dramatic reduction of formation of acetate and pyruvic acid was observed in all the mutants compared to the wild type.  相似文献   

7.

Key message

We have successfully produced single-cell colonies of C. merolae mutants, lacking the PsbQ’ subunit in its PSII complex by application of DTA-aided mutant selection. We have investigated the physiological changes in PSII function and structure and proposed a tentative explanation of the function of PsbQ’ subunit in the PSII complex.

Abstract

We have improved the selectivity of the Cyanidioschyzon merolae nuclear transformation method by the introduction of diphtheria toxin genes into the transformation vector as an auxiliary selectable marker. The revised method allowed us to obtained single-cell colonies of C. merolae, lacking the gene of the PsbQ’ extrinsic protein. The efficiency of gene replacement was extraordinarily high, allowing for a complete deletion of the gene of interest, without undesirable illegitimate integration events. We have confirmed the absence of PsbQ’ protein at genetic and protein level. We have characterized the physiology of mutant cells and isolated PSII protein complex and concluded that PsbQ’ is involved in nuclear regulation of PSII activity, by influencing several parameters of PSII function. Among these: oxygen evolving activity, partial dissociation of PsbV, regulation of dimerization, downsizing of phycobilisomes rods and regulation of zeaxanthin abundance. The adaptation of cellular physiology appeared to favorite upregulation of PSII and concurrent downregulation of PSI, resulting in an imbalance of energy distribution, decrease of photosynthesis and inhibition of cell proliferation.
  相似文献   

8.
Dana Bernátová 《Biologia》2008,63(2):175-176
The paper brings information on an isolated occurrence and morphological characters of Carex × involuta and C. juncella populations in the Vel’ká Fatra Mts. Their presence has been known neither from the territory of Slovakia nor from the whole Western Carpathians till now.  相似文献   

9.
We studied heterologous expression of xylanase 11A gene of Chaetomium thermophilum in Pichia pastoris and characterized the thermostable nature of the purified gene product. For this purpose, the xylanase 11A gene of C. thermophilum was cloned in P. pastoris GS115 under the control of AOX1 promoter. The maximum extracellular activity of recombinant xylanase (xyn698: gene with intron) was 15.6 U ml−1 while that of recombinant without intron (xyn669) was 1.26 U ml−1 after 96 h growth. The gene product was purified apparently to homogeneity level. The optimum temperature of pure recombinant xylanase activity was 70°C and the enzyme retained its 40.57% activity after incubation at 80°C for 10 min. It exhibited quite lower demand of activation energy, enthalpy, Gibbs free energy, entropy, and xylan binding energy during substrate hydrolysis than that required by that of the donor, thus indicating its thermostable nature. pH-dependent catalysis showed that it was quite stable in a pH range of 5.5–8.5. This revealed that gene was successfully processed in Ppastoris and remained heat stable and may qualify for its potential use in paper and pulp and animal feed applications.  相似文献   

10.
Previously, we have described the use of phage display to generate high affinity disulfide bond-linked T cell receptors (TCRs). The affinities of the mutant TCRs were analysed after refolding of separately expressed α and β chains from Escherichia coli inclusion bodies. This approach is only suitable for the analysis of small numbers of TCR variants. An attractive alternative would be soluble expression within the bacterial periplasm, but the generic production of TCRs within the E. coli periplasm has so far not proved successful. Here we show that functional, soluble TCR can be produced within the cytoplasm of trxB gor mutant E. coli strains, with maximum yields of 3.4 mg/l. We also investigated the effect of coexpressing the folding modulators Skp and DsbC finding that the TCR expression levels were largely unaffected by these chaperones. Importantly, we demonstrated that the amount of protein purified from 50 ml starter cultures was sufficient to show functionality of the TCR by specific antigen binding in both ELISA and surface plasmon resonance (SPR) assays. This TCR production method has the potential to allow rapid and medium throughput analysis of affinity-matured TCRs selected from TCR phage display libraries.  相似文献   

11.
12.
Black root rot (BRR), incited by the soilborne pathogen Thielaviopsis basicola has the potential to cause significant economic loss in cotton (Gossypium spp.) production. Cultivated tetraploids of cotton (G. hirsutum and G. barbadense) are susceptible although resistant types have been identified in a possible tetraploid progenitor, G. herbaceum. Genetic mapping was used to detect the chromosomal locations of quantitative trait loci (QTL) that confer resistance to the BRR pathogen. A population of F2 individuals (G. herbaceum × G. arboreum) and F2:3 progeny families were examined. Phenotypic variation between resistant and susceptible reactions could be explained partly by three QTL. The BRR5.1, BRR9.1, and BRR13.1 QTL each explained 19.1, 10.3 and 8.5% of the total phenotypic variation, respectively. The combination of all three in a single genetic model explained 32.7% of the phenotypic variation. Comparative analysis was conducted on significant QTL regions to deduce the cotton–Arabidopsis synteny relationship and examine the correspondence between BRR QTL and Arabidopsis pathogen defense genes. Totally 20 Arabidopsis synteny segments corresponded within one of three BRR QTL regions. Each synteny segment contains many potential Arabidopsis candidate genes. A total of 624 Arabidopsis genes, including 22 pathogen defense and 36 stress response genes, could be placed within the syntenic regions corresponding to the BRR QTL. Fine mapping is needed to delineate each underlying BRR R-gene and possible Arabidopsis orthologs. Research and breeding activities to examine each QTL and underlying genes in Upland cotton (G. hirsutum) are ongoing. Chen Niu, Harriet E. Lister, and Bay Nguyen contributed equally to this work.  相似文献   

13.
14.
European pear exhibits RNase-based gametophytic self-incompatibility controlled by the polymorphic S-locus. S-allele diversity of cultivars has been extensively investigated; however, no mutant alleles conferring self-compatibility have been reported. In this study, two European pear cultivars, ‘Abugo’ and ‘Ceremeño’, were classified as self-compatible after fruit/seed setting and pollen tube growth examination. S-genotyping through S-PCR and sequencing identified a new S-RNase allele in the two cultivars, with identical deduced amino acid sequence as S 21 , but differing at the nucleotide level. Test-pollinations and analysis of descendants suggested that the new allele is a self-compatible pistil-mutated variant of S 21 , so it was named S 21 °. S-genotypes assigned to ‘Abugo’ and ‘Ceremeño’ were S 10 S 21 ° and S 21 °S 25 respectively, of which S 25 is a new functional S-allele of European pear. Reciprocal crosses between cultivars bearing S 21 and S 21 ° indicated that both alleles exhibit the same pollen function; however, cultivars bearing S 21 ° had impaired pistil-S function as they failed to reject either S 21 or S 21 ° pollen. RT-PCR analysis showed absence of S 21 °-RNase gene expression in styles of ‘Abugo’ and ‘Ceremeño’, suggesting a possible origin for S 21 ° pistil dysfunction. Two polymorphisms found within the S-RNase genomic region (a retrotransposon insertion within the intron of S 21 ° and indels at the 3′UTR) might explain the different pattern of expression between S 21 and S 21 °. Evaluation of cultivars with unknown S-genotype identified another cultivar ‘Azucar Verde’ bearing S 21 °, and pollen tube growth examination confirmed self-compatibility for this cultivar as well. This is the first report of a mutated S-allele conferring self-compatibility in European pear.  相似文献   

15.
TNFalpha and TNFbeta, or linfotoxin (LTalpha), are two molecules playing an important role in inflammation. Their genes map on Chromosome 6, between the HLA class II and class I loci. Polymorphisms in, or near, TNF genes have been associated with susceptibility to several autoimmune diseases. Studies of TNF genes in celiac disease (CD) have presented contradictory results. We have assessed the role of TNFalpha and linfotoxin alpha (TNFbeta) in CD and their relative value as CD markers in addition to the presence of DQ2. The TNFA -308 polymorphism and the polymorphism at the first intron of the LTA gene were typed in CD patients and healthy controls and the results were correlated with the presence of DQ2. Significant differences were found in genotype and allele frequencies for the TNFA and LTA genes between CD patients and controls, with an increase in the presence of the TNFA*2 and LTA*1 alleles in CD patients. These differences increase when DQ2-positive CD patients and DQ2-positive controls are compared. In DQ2-positive individuals, allele 2 (A) in position -308 of the promoter of TNFA and allele 1 (G) of the NcoI RFLP in the first intron of LTA are additional risk markers for CD.  相似文献   

16.
We undertook a field study to determine whether comb cell size affects the reproductive behavior of Varroa destructor under natural conditions. We examined the effect of brood cell width on the reproductive behavior of V. destructor in honey bee colonies, under natural conditions. Drone and worker brood combs were sampled from 11 colonies of Apis mellifera. A Pearson correlation test and a Tukey test were used to determine whether mite reproduction rate varied with brood cell width. Generalized additive model analysis showed that infestation rate increased positively and linearly with the width of worker and drone cells. The reproduction rate for viable mother mites was 0.96 viable female descendants per original invading female. No significant correlation was observed between brood cell width and number of offspring of V. destructor. Infertile mother mites were more frequent in narrower brood cells.  相似文献   

17.
The cytokinin biosynthesis gene, isopentenyl transferase (ipt), under the control of an 821 bp fragment of the LEACO1 gene promoter (from Lycopersicon esculentum) was introduced into Dendranthema × grandifloriumIridon’ (chrysanthemum). LEACO10.821kb-ipt transgenic lines grown in the vegetative state, exhibited a range of phenotypic changes including increased branching and reduced internode lengths. LEACO10.821kb-ipt transgenic lines grown in the generative state, exhibited increased flower bud count that ranged from 3.8- to 6.7-times the number produced by wild-type plants. Dramatic increases in flower number were associated with a delay of flower bud development and a decrease in flower bud diameter. RT-PCR analysis indicated differences in ipt gene expression between individual transgenic lines that exhibited a range of phenotypes. Within an individual transgenic line, RT-PCR analysis revealed changes in ipt gene expression at different stages of generative shoot development. Expression of ipt in transgenic lines correlated well with high concentrations of the sum total to bioactive cytokinins plus the glucosides and phosphate derivatives of these species, under both vegetative and generative growth conditions. In general, transgenic lines accumulated higher concentrations of both storage-form cytokinins (O-glucosides) and deactivated-form cytokinins (N-glucosides) in generative shoots of than in vegetative shoots. Based on the range of phenotypes observed in various transgenic chrysanthemum lines, we conclude that the LEACO1 0.821kb -ipt gene appears to have great potential for use in ornamental crop improvement. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
19.
20.
γ-Decalactone, an important flavor compound, can be produced by Yarrowia lipolytica, but the yield is poor because of lactone degradation by enzyme Aox3 (POX3 gene encoded). A yeast strain Yarrowia lipolytica TA1 of high γ-decalactone yield was constructed by integrating copper-resistance gene CRF1 from Yarrowia lipolytica into the locus of POX3 genes. After being cultured in shake-flask at 28°C for 90 h, TA1 reached a γ-decalactone yield of 0.531 g/l (highest at 63 h), being 2.9 times higher than that of Yarrowia lipolytica As2.1045 (0.194 g/l, highest at 57 h). It was free of heterologous DNA sequences and drug-resistance genes and could be safely used in γ-decalactone production. And this work may throw a new light on addressing the problems in commercial fragrance manufacture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号