首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Cell fusion of mouse lymphoma (L5178Y) was achieved by applying electrical pulses under dielectrophoresis. The presence of dispase, pronase or trypsin facilitated the electric pulse-induced cell fusion. Heat-inactivated pronase was no longer effective. Protease inhibitors (aprotinin and p-tosyl-L-lysine chloromethylketone) suppressed the effect of trypsin. Even in the absence of proteases, the cells pretreated with dispase or pronase underwent fusion with high probabilities, as far as free calcium ions were present in the external solution. It is concluded that facilitation of electrofusion by proteases is due to their proteolytic activities.  相似文献   

2.
Suggested roles for polyamine function, and the evidence for these functions, is reviewed. These include membrane stabilization, free radical scavenging, effects on DNA, RNA and protein synthesis, effects on the activities of RNase, protease and other enzymes, the interaction with ethylene biosynthesis, and effects on second messengers. It is concluded that in addition to interacting with plant hormones, polyamines are able to modulate plant development through a fundamental mechanism(s) common to all living organisms.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - ADC arginine decarboxylase - Chl chlorophyll - DAP diaminopropane - DFMA DL--difluoromethylarginine - DFMO DL--difluoromethylornithine - PAs polyamines - Put putrescine - SAM S-adenosylmethionine - Spd spermidine - Spm spermine  相似文献   

3.
A new assay for the evaluation of spermidine (Spd) synthase activity was developed. It involves a coupled reaction and avoids the use of decarboxylated S-adenosylmethionine, which is unstable and not easily available. This assay was applied to assess changes in enzyme activity in oat leaves subjected to osmotic stress in the dark. The results indicate that osmotically-induced putrescine (Put) accumulation in cereals results not only from the activation of the arginine decarboxylase pathway, but also from the inhibition of the activity of Spd synthase, the enzyme which catalyzes the transformation of Put to Spd. Other possibilities which could contribute to the decline of Spd and spermine levels under osmotic stress are also discussed.Abbreviations ADC arginine decarboxylase - Dap diaminopropane - DFMA -difluoromethylarginine - MGBG methylglyoxal-bis-guanylhydrazone - MTA 5-deoxy-5-methylthioadenosine - ODC ornithine decarboxylase - PA polyamines - PAO polyamine oxidase - PCA perchloric acid - PLP pyridoxal phosphate - Put putrescine - SAM S-adenosylmethionine - dSAM decarboxylated S-adenosylmethionine - SAMDC S-adenosylmethionine decarboxylase - Spd spermidine - Spm spermine  相似文献   

4.
The primary free polyamines identified during growth and development of strawberry (Fragaria × ananassa Duch.) microcuttings cultivated in vitro were putrescine, spermidine and spermine. Polyamine composition differed according to tissue and stages of development; putrescine was predominant in aerial green tissues and roots. -DL-difluoromethylarginine (DFMA), a specific and irreversible inhibitor of the putrescine-synthesizing enzyme, arginine decarboxylase (ADC), strongly inhibited growth and development. Application of agmatine or putrescine to the inhibited system resulted in a reversal of inhibition, indicating that polyamines are involved in regulating the growth and development of strawberry microcuttings. -DL-difluoromethylornithine (DFMO), a specific and irreversible inhibitor of putrescine biosynthesis by ornithine decarboxylase, promoted growth and development. We propose that ADC regulates putrescine biosynthesis during microcutting development. The application of exogenous polyamines (agmatine, putrescine, spermidine) stimulated development and growth of microcuttings, suggesting that the endogenous concentrations of these polyamines can be growth limiting.Abbreviations ADC arginine decarboxylase - ODC ornithine decarboxylase - DFMA -difluoromethylarginine - DFMO -difluoromethylornithine - Put putrescine - Spd spermidine - Sp spermine - DW dry weight - PA polyamine - PPF photosynthetic photon flux  相似文献   

5.
Changes in the tubulin cytoskeleton during protoplast culture and plant regeneration of Solanum lycopersicoides Dun. were analyzed using an immunodetection method. Directly after isolation, four groups of protoplasts were distinguished: (1) mononuclear, (2) polynuclear, (3) homogeneous, (4) anuclear. The tubulin cytoskeleton of the protoplasts underwent rearrangements, correlating to the number and structure of cell nuclei in the protoplast. All protoplast groups with the exception of mononuclear were characterized by perturbations in the organization of the tubulin cytoskeleton. Anuclear and homogeneous protoplasts did not have a tubulin cytoskeleton. Polynuclear protoplasts had cortical microtubules, but were not capable of re-forming their original arrangement and did not possess a radial or perinuclear cytoskeleton. Irregularities in microtubule arrangement of these three groups of protoplasts caused their inability to regenerate a cell wall and to divide. Anuclear, polynuclear and homogeneous protoplasts were eliminated from the culture. Mononuclear protoplasts rearranged their cortical microtubules and reestablished the radial and perinuclear tubulin cytoskeleton. Re-formation of the cell suspension and subsequent regeneration of plants occurred exclusively from mononuclear protoplasts, which were able to regenerate cell walls and to divide.Abbreviations 2,4D 2,4-Dichlorophenoxyacetic acid - BA Benzyloadenine - DAPI 4,6 Diamidino-2-phenylindole - DMSO Dimethyl sulfoxide - EGTA Ethylene glycol-bis(2-aminoethylether)-N, N, N, N-tetraacetic acid - FITC Fluorescein isothiocyanate - MS Murashige and Skoog medium - MSB Microtubule stabilizing buffer - PBS Phosphate-buffered saline - PIPES Piperazine-N, N-bis(2-ethane sulfonic acid) - PPB Preprophase bandCommunicated by H. Lörz  相似文献   

6.
DNA replication in maize leaf protoplasts   总被引:1,自引:0,他引:1  
Maize leaf protoplasts were investigated for their metabolic competence and capacity to synthesize DNA. When protoplasts were incubated at elevated temperatures, they exhibited a heat shock response with specific proteins being preferentially synthesized. This indicated that the protoplasts were fully metabolically functional and capable of responding to environmental stimuli. Significant DNA synthesis was observed in these protoplasts after incorporation of 3H-thymidine into chromatin by trichloroacetic acid precipitation and by incorporation of 5-bromo-2-deoxyuridine (BrdU), an analog of thymidine, detected by immunofluorescence. The immunocytochemical method revealed that about 50% of nuclei in the maize leaf protoplasts were labelled after 3 days of culture and that most of these nuclei were labelled as intensely as normal mitotic cells. Aphidicolin, an inhibitor of DNA polymerase-, decreased the percentage of labelled nuclei, demonstrating that the labelling was substantially due to replicative DNA synthesis. However, chromosome condensation was not observed. It is proposed that these protoplasts are capable of DNA synthesis, but incapable of nuclear division. Effects of media additives on the number of nuclei entering S phase in these protoplasts were also assessed by the immunocytochemical method. Inclusion of 80mM Ca2+ in the enzyme solution increased protoplast yield and also appeared beneficial to DNA synthesis. The antioxidant, n-propyl gallate, which was used to stabilize the protoplasts, delayed the onset of DNA synthesis. Arginine and spermidine produced a slight increase in DNA synthesis.Abbreviations BrdU 5-bromo-2-deoxyuridine - DMSO dimethyl sulfoxide - n-PG n-propyl gallate - PBS phosphate-buffered saline Dedicated to Dr. Friedrich Constabel on the occasion of his 60th birthday  相似文献   

7.
Leaves of Chinese cabbage from healthy plants or from those infected with turnip yellow mosaic virus yield protoplasts which convert methionine to protein, S-adenosylmethionine, decarboxylated S-adenosylmethionine, spermidine, spermine and 1-aminocyclopropane-1-carboxylate. The enzyme spermidine synthase is entirely cytosolic and has been purified extensively. An inhibitor of this enzyme, dicyclohexylamine, blocks spermidine synthesis in intact protoplasts, and in so doing stimulates spermine synthesis. Aminoethoxyvinylglycine blocks the conversion of S-adenosylmethionine to 1-aminocyclopropane-1-carboxylate, the precursor to ethylene, in protoplasts. This inhibitor markedly stimulates the synthesis of both spermidine and spermine. Essentially all the protoplasts obtained from new leaves of plants infected 7 days earlier are infected. On incubation, such protoplasts convert exogenous methionine to viral protein and viral spermidine whose specific radioactivity is twice that of total cell spermidine. Exogeneous spermidine is also converted to cell putrescine and viral spermidine and spermine. Normal and virus-infected cells are being studied for their content of phenolic acid amides of the polyamines.  相似文献   

8.
In rape leaf discs the response to osmotic stress has been found to be associated with increases in putrescine and 1,3-diaminopropane (an oxidation product of spermidine and/or spermine) and decreases in spermidine titers. In contrast, agmatine and spermine titers showed small changes while cadaverine accumulated massively. Similar results were observed in whole rape seedlings subjected to drought conditions. -DL-difluoromethylarginine (DFMA), a specific irreversible inhibitor of arginine decarboxylase, strongly inhibited polyamine accumulation in unstressed rape leaf discs, which suggested that the arginine decarboxylase pathway is constitutively involved in putrescine biosynthesis. In leaf discs treated under high osmotic stress conditions, both DFMA and DFMO (-DL-difluoromethylornithine, a specific and irreversible inhibitor of ornithine decarboxylase) inhibited the accumulation of polyamines. Although the stressed discs treated with DFMA had a lower concentration of putrescine than those treated with DFMO, we propose that under osmotic stress the synthesis of putrescine might involve both enzymes. DFMA, but not DFMO, was also found to inhibit cadaverine formation strongly in stressed explants. The effects on polyamine biosynthesis and catabolism of cyclohexylamine, the spermidine synthase inhibitor, aminoguanidine, the diamine-oxidase inhibitor and -aminobutyric acid, a product of putrescine oxidation via diamine oxidase or spermidine oxidation via polyamine oxidase were found to depend on environmental osmotic challenges. Thus, it appears that high osmotic stress did not block spermidine biosynthesis, but induced a stimulation of spermidine oxidation. We have also demonstrated that in stressed leaf discs, exogenous ethylene, applied in the form of (2-chloroethyl) phosphonic acid or ethephon, behaves as an inhibitor of polyamine synthesis with the exception of agmatine and diaminopropane. In addition, in stressed tissues, when ethylene synthesis was inhibited by aminooxyacetic acid or aminoethoxyvinylglycine, S-adenosylmethionine utilization in polyamine synthesis was not promoted. The relationships between polyamine and ethylene biosynthesis in unstressed and stressed tissues are discussed.  相似文献   

9.
Summary o-Phtalaldehyde (OPT) reacts with a number of biologically important molecules, including the polyamines, spermidine and spermine. By systematically varying reaction conditions with respect to temperature, pH, concentration and length of exposure to the reagent, using both model systems and tissues, we have succeeded in constructing a cytochemical OPT-method specific for spermidine and spermine. The method detects cell types known to contain these polyamines, including growing and neoplastic cells. The staining pattern obtained with the OPT method is identical to that obtained with the formaldehyde-fluorescamine (FF) technique recently shown to be specific for spermidine and spermine. In contrast to the FF technique, the OPT method can be used for staining suspensions of isolated cells and may hence be employed in studies using fluorescence-activated cell sorting (FACS). Preliminary such studies show a pronounced decrease in cellular OPT-induced fluorescence, paralleled by a decrease in content of polyamines, after treatment with the polyamine biosynthesis inhibitor -difluoromethylornithine (DFMO). In contrast, cells simultaneously treated with DFMO+spermidine show pronounced increases in their spermidine content and parallel increases in their OPT-induced fluorescence. Availability of methods selectively demonstrating polyamines at the cellular and subcellular level is expected to aid our understanding of polyamine functions in normal growth and cancer.  相似文献   

10.
A comparative study for preparation of cell suspensions from pancreatic islets has been performed using mechanical or enzymatic dissociation with proteolytic enzymes such as trypsin, dispase, and pronase. Treatment of isolated pancreatic islets from neonatal rats with these enzymes proved to be superior to a mechanical dissociation method. The enzymatic dissociation was performed by fractionated treatment of pancreatic islets with low concentration of enzymes in Hanks' solution for 2-3 min at room temperature. With the exception of trypsin the percentage of single cells was consistently higher with dispase and pronase treatment, being 83-92%. Cell viability (dye exclusion) was more than 90%. Mechanical disintegration of pancreatic islets resulted in a low yield of single cells, and cell viability was considerably reduced in comparison with the enzymatic methods. Labeling of islet cells with Na2 51CrO4 and measurement of the basal 51Cr-release demonstrated superior membrane preservation after pronase or dispase treatment. Islet cells isolated either by fractionated dispase or pronase treatment were found to be well preserved and very suitable for the detection of circulating cell surface antibodies and their cytotoxic effects to islet cells.  相似文献   

11.
The Protease Fluorescent Detection Kit provides ready-to-use reagents for detecting the presence of protease activity. This simple assay to detect protease activity uses casein labeled with fluorescein isothiocyanate (FITC) as the substrate.Protease activity results in the cleavage of the FITC-labeled casein substrate into smaller fragments, which do not precipitate under acidic conditions. After incubation of the protease sample and substrate, the reaction is acidified with the addition of trichloroacetic acid (TCA). The mixture is then centrifuged with the undigested substrate forming a pellet and the smaller, acid soluble fragments remaining in solution. The supernatant is neutralized and the fluorescence of the FITC-labeled fragments is measured.The described kit procedure detects the trypsin protease control at a concentration of approximately 0.5 μg/ml (5 ng of trypsin added to the assay). This sensitivity can be increased with a longer incubation time, up to 24 hours. The assay is performed in microcentrifuge tubes and procedures are provided for fluorescence detection using either cuvettes or multiwell plates.Download video file.(52M, flv)  相似文献   

12.
Summary Putrescine, spermine, spermidine, and agmatine in concentrations between 5–15 g/ml inhibit pollen germination. Whereas spermine reduces pollen tube length, putrecine and agmatine do not affect pollen tube growth. Spermidine effects a small increase (about 5%) of pollen tube elongation. Spermine and spermidine can be found in pollen. Addition of spermine (7 or 10 g/ml) depresses protein synthesis, whilst spermidine does not affect protein synthesis. On the basis of uridine-5-T incorporation it could be shown that both spermine and spermidine increase RNA synthesis. On tho basis of thymidine-T incorporation in the first hpurs of germination it seems that DNA synthesis is also stimulated by spermine and spermidine present in the medium. A net increase of nucleic acids was found when spermidine was added to the germination substrate.These results are interpreted as suggesting that, in the pollen tubes investigated, polyamine concentration may be a factor in the regulation of nucleic acid synthesis, resulting in a prolonged synthesis of specific proteins and in this way influencing growth and the developmental pattern of pollen tubes.  相似文献   

13.
In the short-day plant, strawberry (Fragaria ananassa Duch.), polyamines (putrescine, spermidine and spermine), conjugated spermidine (water-insoluble compounds) and bound amines (putrescine, spermidine, phenylethylamine, 3-hydroxy, 4-methoxyphenylethylamine) accumulated in the shoot tips during floral induction and before floral emergence. Different associations of free amines and conjugated amines were observed during floral induction, as compared with the reproductive phase. During the whole period of floral development, phenylethylamine (an aromatic amine) was the predominant amine, representing 80 to 90% of the total free amine pool. Phenylethylamine conjugates (water-insoluble compounds) were the predominant amides observed prior to fertilization. These substances decreased drastically after fertilization. In vegetative shoot tips from plants grown continously under long days, free polyamines (putrescine, spermidine) and bound polyamines (putrescine, spermidine) were low and no change was observed. Free amines (spermine and phenylethylamine), bound aromatic amines (phenylethylamine, 3-hydroxy, 4-methoxyphenylethylamine), conjugated spermidine and phenylethylamine did not appear. Male-sterile flowers were distinguished by their lack of conjugated spermidine and phenylethyalamine and by a decrease in free phenylethylamine. In normal and sterile strawberry plants -DL-difluoromethylornithine (DFMO), a specific irreversible inhibitor of ornithine decarboxylase (ODC), caused inhibition of flowering and free and polyamine conjugates. When putrescine was added, polyamine titers and flowering were restored. A similar treatment with -DL-difluoromethylarginine (DFMA), a specific, irreversible inhibitor of arginine decarboxylase (ADC), did not affect flowering and polyamine titers. These results suggest that ornithine decarboxylase (ODC) and polyamines are involved in regulating floral initiation in strawberry. The relationship between polyamines, aromatic amines, conjugates, floral initiation and male sterility is discussed.Abbreviations ADC arginine decarboxylase - ODC ornithine decarboxylase - DFMA -DL-difluoromethylarginine - DFMO -DL-difluoromethylornithine - Put putrescine - Spd spermidine - Spm spermine - Phen phenylethylamine - 3H4M Phen 3-hydroxy, 4-methoxyphenylethylamine  相似文献   

14.
Chromatin prepared from maize shoot tips using as extraction medium including quinacrine as an inhibitor of polyamine oxidase, contained 1.6 pmol spermidine g DNA-1 and 14.8 pmol spermine g DNA-1, respectively. This represented 0.1% spermidine and 3.7% spermine as compared with the content of those amines in the whole tissue. No putrescine was detectable in the chromatin preparation. When contamination of polyamines in the preparation was determined by the addition of labeled polyamines to the extraction medium, the ratio of the polyamines in the preparation to those in the extraction medium was 0.1% spermidine and 0.7% spermine, respectively. Spermine in the chromatin preparation was almost fully solubilized by a DNase-treatment, but spermidine was less easily solubilized. Most of the spermine associated with the chromation is chromatin-specific.  相似文献   

15.
For the simultaneous production of protease and oxytetracycline, mycelium and protoplasts of Streptomyces rimosus TM-55 were cultivated in basal medium containing soluble starch, corn steep liquid, ammonium sulphate, calcium carbonate, sodium chloride and soybean oil. Protease and oxytetracycline production increased with decreasing in ratio of culture broth to vessel volume from 1:2 to 1:5. Each ml of broth with 0.286 mg fresh mycelia yielded 168–204 units of protease and 785–972 g of oxytetracycline after replacement of corn steep liquor, sodium chloride and soybean oil with beef extract and sunflower oil, while each ml of broth with 7.5 × 107 protoplasts produced 141–153 units of protease and 504–615 g of oxytetracycline. Protease and oxytetracycline production were low when the pH was 5.1 or 9.0. Soluble starch and ammonium sulphate were the best carbon and nitrogen sources, respectively. Supplementation with calcium carbonate enhanced protease and oxytetracycline production. The productivity of protoplasts decreased sharply when the incubation temperature increased from 28 to 34 °C, while the productivity of mycelium was almost unchanged.  相似文献   

16.
Protease nexin. Properties and a modified purification procedure   总被引:21,自引:0,他引:21  
The present paper describes chemical and functional properties of protease nexin, a serine protease inhibitor released from cultured human fibroblasts. It is shown that protease nexin is actually synthesized by fibroblasts and represents about 1% of their secreted protein. Analysis of the amino acid composition of purified protease nexin indicates that it is evolutionarily related to antithrombin III and heparin cofactor II. Protease nexin contains approximately 6% carbohydrate, with 2.3% amino sugar, 1.1% neutral sugar, and 3.0% sialic acid. The Mr calculated from equilibrium sedimentation analysis is 43,000. Protease nexin is a broad specificity inhibitor of trypsin-like serine proteases. It reacts rapidly with trypsin (kassoc = 4.2 +/- 0.4 X 10(6) M-1 s-1), thrombin (kassoc = 6.0 +/- 1.3 X 10(5) M-1 s-1), urokinase (kassoc = 1.5 +/- 0.1 X 10(5) M-1 s-1), and plasmin (kassoc = 1.3 +/- 0.1 X 10(5) M-1 s-1), and slowly inhibits Factor Xa and the gamma subunit of nerve growth factor but does not inhibit chymotrypsin-like proteases or leukocyte elastase. In the presence of heparin, protease nexin inhibits thrombin at a nearly diffusion-controlled rate. Two heparin affinity classes of protease nexin can be detected. The present characterization pertains to the fraction of protease nexin having the higher affinity for heparin. The low affinity material, which is the minor fraction, is lost during purification.  相似文献   

17.
Summary Treatment with -difluoromethylornithine (DFMO), an enzyme-activated irreversible inhibitor of ornithine decarboxylase (ODC), depletes the putrescine and spermidine content, and reduces the growth rate of Ehrlich ascites tumor cells.The addition of putrescine, which is the immediate precursor of spermidine, promptly replenished the intracellular putrescine and spermidine pools and completely reversed the antiproliferative effect of DFMO. A sequential accumulation of spermine, spermidine and putrescine was observed.1,3-diaminopropane, a lower homolog of putrescine, did not reverse the antiproliferative effect of DFMO, despite its structural similarity and identical positive charge. By inhibiting remaining ODC activity, resistant to 5 mM DFMO, and possibly by inhibiting spermine synthase activity, 1,3-diaminopropane produced a further decrease in total polyamine content by reducing the spermine content.Mg2+, which can replace putrescine in many in vitro reactions, completely lacked the capacity to reverse the antiproliferative effect of putrescine and spermidine deficiency.Abbreviations DFMO -difluoromethylornithine - ODC ornithine decarbxylase  相似文献   

18.
The main free amines identified during growth and development of grapevine microcuttings of rootstock 41 B, (Vitis vinifera cv. Chasselas × Vitis berlandieri) cultivated in vitro were agmatine, putrescine, spermidine, spermine, diaminopropane and tyramine (an aromatic amine). Amine composition differed according to tissue, with diaminopropane the major polyamine in the apical parts, internodes and leaves. Putrescine predominated in the roots. There was also a decreasing general polyamine and specific tyramine gradient along the stem from the top to the bottom. Conjugated amines were only found in roots. The application of exogenous amines (agmatine, putrescine, spermidine, tyramine) stimulated development and growth of microcuttings, suggesting that the endogenous concentrations of these amines can be growth limiting. Diaminopropane (the product of oxidation of spermidine or spermine by polyamine oxydases) strongly inhibited microcutting growth and development. -DL-difluoromethylarginine (DFMA), a specific and irreversible inhibitor of the putrescine-synthesizing enzyme, arginine decarboxylase (ADC), led to inhibition of microcutting development. Application of agmatine or putrescine to the inhibited system resulted in a reversal of inhibition indicating that polyamines are involved in regulating the growth and development of grapevine microcuttings. -DL-difluoromethylornithine (DFMO), a specific and irreversible inhibitor of putrescine biosynthesis from ornithine decarboxylase (ODC), had no effect on microcutting development and growth. We propose that ADC regulates putrescine biosynthesis during microcutting development.  相似文献   

19.
Tabor, Celia W. (National Institute of Arthritis and Metabolic Diseases, Bethesda, Md.). Stabilization of protoplasts and spheroplasts by spermine and other polyamines. J. Bacteriol. 83:1101-1111. 1962.-Spermine (10(-3)m) or spermidine prevents lysis of lysozyme-produced protoplasts of Escherichia coli W, E. coli B, and Micrococcus lysodeikticus in hypotonic media. Spheroplasts prepared by the action of penicillin are also stabilized by these concentrations of spermine and spermidine, but the protection is not as complete. Streptomycin, polylysine, and Ca(++) are also effective or partially effective stabilizers, but 1,4-diaminobutane, 1,5-diaminopentane, ornithine, Mg(++), and monovalent cations have no protective action at 10(-3)m concentration, and only a slight effect at higher concentrations. The osmotic stability conferred on protoplasts by spermine is irreversible. However, the protective effect of polyamines against lysis is not accompanied by restoration of viability to lysozyme protoplasts. There is a marked reduction in the loss of ultra-violet-absorbing material from the protoplasts to the medium when 10(-3)m spermine is present.  相似文献   

20.
Summary Conditions were used where the action of porcine pancreatic phospholipase A2 on phospholipids can be followed in the absence of added calcium and the catalytic activity is supported by the calcium brought with the nanomolar enzyme. Therefore, alterations in the enzyme velocity resulting from the presence of spermine or spermidine could be specifically studied using 1-palmitoyl-2-(pyren-1-yl)hexanoyl-sn-glycero-3-phosphocholine (PPHPC) and 1-palmitoyl-2-(pyren-1-yl)hexanoyl-sn-glycero-3-phosphoglycerol (PPHPG) as substrates. Both spermine and spermidine activated the hydrolysis of PPHPG fourfold at polyamine/phospholipid molar ratios of approximately 11 and 121, respectively. Double-reciprocal plots of enzyme activityvs. PPHPG concentration revealed the enhancement to be due to increased apparentV max while the apparentK m was slightly increased. In the presence of 4mm CaCl2 inhibition by polyamines of PPHPG hydrolysis by phospholipase A2 was observed. Using synthetic diamines we could further demonstrate that two primary amino groups are required for the activation. In the absence of exogenous CaCl2 polyamines inhibited the hydrolysis of PPHPC by phospholipase A2. The presence of 4mm CaCl2 reversed this inhibition and a twofold activation was observed at 10 m spermine. The results obtained indicate that the activation of PLA2 by spermine and spermidine is produced at the level of the substrate, PPHPG. This implies the formation of complexes of phosphatidylglycerol and polyamines with defined stoichiometries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号