首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
White lupin (Lupinus albus L.) acclimates to phosphorus deficiency (–P) by the development of short, densely clustered lateral roots called proteoid (or cluster) roots. These specialized plant organs display increased exudation of citric and malic acid. The enhanced exudation of organic acids from P stressed white lupin roots is accompanied by increased in vitro phosphoenolpyruvate carboxylase (PEPC) and malate dehydrogenase (MDH) activity. Here we report the cloning of full-length white lupin PEPC and MDH cDNAs. RNA blot analysis indicates enhanced expression of these genes in –P proteoid roots, placing higher gene expression at the site of organic acid exudation. Correspondingly, macroarray analysis of about 1250 ESTs (expressed sequence tags) revealed induced expression of genes involved in organic acid metabolism in –P proteoid roots. In situ hybridization revealed that PEPC and MDH were both expressed in the cortex of emerging and mature proteoid rootlets. A C3 PEPC protein was partially purified from proteoid roots of P deficient white lupin. Native and subunit Mr were determined to be 440 kD and 110 kD, respectively. Citrate and malate were effective inhibitors of in vitro PEPC activity at pH 7. Addition of ATP partially relieved inhibition of PEPC by malate but had little effect on citrate inhibition. Taken together, the results presented here suggest that acclimation of white lupin to low P involves modified expression of plant genes involved in carbon metabolism.  相似文献   

2.
When white lupin (Lupinus albus L.) is subjected to P deficiency lateral root development is altered and densely clustered, tertiary lateral roots (proteoid roots) are initiated. These proteoid roots exude large amounts of citrate, which increases P solubilization. In the current study plants were grown with either 1 mM P (+P-treated) or without P (-P-treated). Shoots or roots of intact plants from both P treatments were labeled independently with 14CO2 to compare the relative contribution of C fixed in each with the C exuded from roots as citrate and other organic acids. About 25-fold more acid-stable 14C, primarily in citrate and malate, was recovered in exudates from the roots of -P-treated plants compared with +P-treated plants. The rate of in vivo C fixation in roots was about 4-fold higher in -P-treated plants than in +P-treated plants. Evidence from labeling intact shoots or roots indicates that synthesis of citrate exuded by -P-treated roots is directly related to nonphotosynthetic C fixation in roots. C fixed in roots of -P-treated plants contributed about 25 and 34% of the C exuded as citrate and malate, respectively. Nonphotosynthetic C fixation in white lupin roots is an integral component in the exudation of large amounts of citrate and malate, thus increasing the P available to the plant.  相似文献   

3.
White lupin (Lupinus albus L.) develops proteoid (cluster) rootsin response to phosphorus deficiency. Proteoid roots are composedof tight clusters of rootlets that initiate from the pericycleopposite protoxylem poles and emerge from every protoxylem polewithin the proteoid root axis. Auxins are required for lateralroot development, but little is known of their role in proteoidroot formation. Proteoid root numbers were dramatically increasedin P-sufficient (+P) plants by application of the syntheticauxin, naphthalene acetic acid (NAA), to leaves, and were reducedin P-deficient (-P) plants by the presence of auxin transportinhibitors [2,3,5-triiodobenzoic acid (TIBA) and naphthylphthalamicacid (NPA)]. While ethylene concentrations in the root zonewere 1.5-fold higher in -P plants, there was no effect on proteoidroot numbers of the ethylene inhibitors aminoethoxyvinvylglycine(AVG) and silver thiosulphate. Phosphonate, which interfereswith plant perception of internal P concentration, dramaticallyincreased the number of proteoid root segments in +P plants.Activities of phosphoenolpyruvate carboxylase (PEPC), malatedehydrogenase (MDH) and exuded acid phosphatase in proteoidroot segments were not different from +P controls when NAA wasapplied to +P lupin plants, but increased to levels comparableto -P plants in the phosphonate treatment. Addition of TIBAor NPA to -P plants reduced PEPC and MDH activity of -P proteoidroots to levels found in +P or -P normal root tissues, but didnot affect acid phosphatase in root exudates. These resultssuggest that auxin transport from the shoot plays a role inthe formation of proteoid roots during P deficiency. Auxin-stimulatedproteoid root formation is necessary, but not sufficient, tosignal the up-regulation of PEPC and MDH in proteoid root segments.In contrast, phosphonate applied to P-sufficient white lupinelicits the full suite of coordinated responses to P deficiencyCopyright2000 Annals of Botany Company Lupinus albus L., white lupin, proteoid roots, auxin, ethylene, phosphonate, phosphorus deficiency  相似文献   

4.
Nodulated lupins (Lupinus angustifolius cv. Wonga) were hydroponically grown under conditions of low phosphate (LP) or adequate phosphate (HP) to assess the effect of phosphoenolpyruvate carboxylase (PEPC)-derived organic acids on nitrogen assimilation in LP nodules. LP conditions are linked to altered organic acid metabolism, by the engagement of PEP metabolism via PEPC. In LP nodules, the enhanced organic acid synthesis may reduce the available organic carbon for nitrogen assimilation. The diversion of carbon between the organic acid- and amino acid pools was assessed through key nodular enzymes and (14)CO(2) metabolism. Under LP conditions, increased rates of organic acid synthesis via PEPC and malate dehydrogenase (MDH), coincided with reduced nitrogen assimilation via aspartate aminotransferase (AAT), aspartate synthetase (AS) and glutamine synthetase (GS)/glutamate synthase (GOGAT) activities. There was a preferential metabolism of nodular (14)CO(2) into organic acids and particularly into malate. High malate levels were associated with reduced N(2) fixation and synthesis of amino acids. These results indicate that phosphorus deficiency can enhance malate synthesis in nodules, but that excessive malate accumulation may inhibit N(2) fixation and nitrogen assimilation.  相似文献   

5.
6.
Exudation of organic anions is believed to be a common tolerance mechanism for both aluminium toxicity and phosphorus deficiency. Nevertheless, which of these stresses that actually elicit the exudation of organic anions from rape ( Brassica napus L) remains unknown, and the combined effects of Al toxicity and P deficiency on rape have not been reported before. Therefore, in the current study, Brassica napus var. Natane nourin plants grown with or without 0.25 m M P were exposed to 0 or 50 µ M AlCl3 and several parameters related to the exudation of organic anions from the roots were investigated. Eight days of P deficiency resulted in a significant growth reduction, but P deficiency alone did not induce exudation of organic anions. In contrast, Al strongly induced organic acid exudation, while simultaneously inhibiting root growth. Increased in-vitro activity of citrate synthase (CS, EC 4.1.3.7), malate dehydrogenase (MDH, EC 1.1.1.37) and phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31), together with reduced root respiration, indicated that the Al-induced accumulation and subsequent exudation of citrate and malate were associated with both increased biosynthesis and reduced metabolism of citric and malic acid. Phosphorus-sufficient plants showed more pronounced aluminium-induced accumulation and exudation of organic anions than P-deficient plants. A divided root chamber experiment showed the necessity of direct contact between Al and roots to elicit exudation of organic anions. Prolonged exposure (10 days) to Al resulted in a decrease in the net exudation of citrate and malate, and the rate of decrease was much more rapid in P-deficient plants than in P-sufficient plants. It is concluded that P nutrition affects the level of Al-induced synthesis and exudation of organic anions. However, the mechanism needs further investigation.  相似文献   

7.
We investigated (1) the effect of constant and altered inorganic phosphate (Pi) supply (1–100 mmol m–3) on proteoid root production by white lupin ( Lupinus albus L.); and (2) the variation in citrate efflux, enzyme activity and phosphate uptake along the proteoid root axis in solution culture. Proteoid root formation was greatest at Pi solution concentrations of 1–10 mmol m–3 and was suppressed at 25 mmol m–3 Pi and higher. Except at 1 mmol m–3 Pi, the formation of proteoid roots did not affect plant dry matter yields or shoot to root dry matter ratios, indicating that proteoid roots can form under conditions of adequate P supply and not at the expense of dry matter production. Plants with over 50% of the root system as proteoid roots had tissue P concentrations considered adequate for maximum growth, providing additional evidence that proteoid roots can form on P-sufficient plants. There was an inverse relationship between the Pi concentration in the youngest mature leaf and proteoid root formation. Citrate efflux and the activities of enzymes associated with citric acid synthesis (phosphoenolpyruvate carboxylase and malate dehydrogenase) varied along the proteoid root axis, being greatest in young proteoid rootlets of the 1–3 cm region from the root tip. Citrate release from the 0–1 and 5–9 cm regions of the proteoid root was only 7% (per unit root length) of that from the 1–3 cm segment. Electrical potential and 32Pi uptake measurements showed that Pi uptake was more uniform along the proteoid root than citrate efflux.  相似文献   

8.
Phosphoenolpyruvate carboxylase (PEPC) from higher plants is usually assayed by using malate dehydrogenase (MDH) as a coupling enzyme. To avoid erroneous readings caused by metal ions, which convert oxaloacetate (OAA) to pyruvate, lactic dehydrogenase can be included. Reporting the total NADH used by both coupling enzymes gives the total OAA production. Microbial PEPC has been assayed by employing citrate synthase (CS) as a coupling enzyme which detects the reaction of CoA with Ellman's reagent. Comparable Km values for MgPEP are found with the two assays. When MDH alone is used as the coupling system, the Vmax value is about 60% larger than the one found with the CS assay. However, when MDH is added to the CS assay without the NADH cofactor, Vmax is brought back to the same level as that with the NADH-coupled enzyme. Malate inhibition of PEPC assayed with the CS coupling system is blocked by low concentrations of citrate in the range produced in the assay. High concentrations of citrate inhibit PEPC. Glucose-6-phosphate in concentrations higher than 1 m M blocks the response of PEPC to added MDH in the CS assay.  相似文献   

9.
In order to cope with phosphate deficiency, white lupin produces bottle‐brushed like roots, so‐called cluster or proteoid roots which are specialized in malate and citrate excretion. Young, developing cluster roots mainly excrete malate whereas mature cluster roots mainly release citrate. Mature proteoid roots excrete four to six times more carboxylates compared with juvenile proteoid roots. Using a cDNA‐amplified restriction fragment length polymorphism (AFLP) approach we identified a gene coding for a putative ATP‐citrate lyase (ACL) up‐regulated in young cluster roots. Cloning of the lupin ACL revealed that plant ACL is constituted by two polypeptides (ACLA and ACLB) encoded by two different genes. This contrasts with the animal ACL, constituted of one polypeptide which covers ACLA and ACLB. The ACL function of the two lupin gene products has been demonstrated by heterologous expression in yeast. Both subunits are required for ACL activity. In lupin cluster roots, our results suggest that ACL activity could be responsible for the switch between malate and citrate excretion in the different developmental stages of cluster roots. In primary roots of lupin and maize, ACL activity was positively correlated with malate exudation. These results show that ACL is implicated in root exudation of organic acids and hence plays a novel role in addition to lipid synthesis. Our results suggest that in addition to lipid biosynthesis, in plants, ACL is implicated in malate excretion.  相似文献   

10.
During P deficiency, the increased activity of malate dehydrogenase (MDH, EC 1.1.1.37) can lead to malate accumulation. Cytosolic- and nodule-enhanced MDH (cMDH and neMDH, respectively) are known isoforms, which contribute to MDH activity in root nodules. The aim of this study was to investigate the role of the cMDH isoforms in nodule malate supply under P deficiency. Nodulated lupins (Lupinus angustifolius var. Tanjil) were hydroponically grown at adequate P (+P) or low P (−P). Total P concentration in nodules decreased under P deficiency, which coincided with an increase in total MDH activity. A consequence of higher MDH activity was the enhanced accumulation of malate derived from dark CO2 fixation via PEPC and not from pyruvate. Although no measurable neMDH presence could be detected via PCR, gene-specific primers detected two 1 kb amplicons of cMDH, designated LangMDH1 (corresponding to +P, HQ690186) and LangMDH2 (corresponding to −P, HQ690187), respectively. Sequencing analyses of these cMDH amplicons showed them to be 96% identical on an amino acid level. There was a high degree of diversification between proteins detected in this study and other known MDH proteins, particularly those from other leguminous plants. Enhanced malate synthesis in P-deficient nodules was achieved via increased anaplerotic CO2 fixation and subsequent higher MDH activities. Novel isoforms of cytosolic MDH may be involved, as shown by gene expression of specific genes under P deficiency.  相似文献   

11.
采用根系分泌有机酸原位收集方法及高效液相色谱技术分析了供磷及缺磷后不同时间白羽扇豆(LupinusalbusL .)非排根区根尖和排根分泌有机酸的种类和数量 ,以及相应的根尖、排根组织 ,茎木质部、韧皮部汁液中有机酸含量的变化。结果表明 :(1)缺磷能够诱导白羽扇豆根系产生大量排根 ,根系的有机酸分泌量也明显增加。 (2 )无论在供磷或缺磷条件下 ,排根与非排根区根尖组织中的有机酸种类相同 ,但排根主要分泌柠檬酸和苹果酸 ,而非排根区根尖主要分泌苹果酸和乙酸。 (3)缺磷后非排根区根尖分泌苹果酸的量增加 ,至第 17天达到高峰 ;排根开始分泌柠檬酸的时间相对较晚。缺磷后排根分泌柠檬酸的量随缺磷时间的延长不断增加。 (4 )在缺磷的排根与非排根区根尖组织和茎木质部伤流液中含有大量柠檬酸和苹果酸 ,但在茎韧皮部汁液中则几乎检测不到这两种有机酸。上述结果表明 ,尽管排根和非排根区根尖组织中的有机酸种类相同 ,但它们向外分泌的有机酸种类不同。缺磷后排根及非排根区根尖增加向外分泌的有机酸主要在根中合成  相似文献   

12.
Liang  Ruixia  Li  Chunjian 《Plant and Soil》2003,248(1-2):221-227
In contrast with the well document role of proteoid root formation and carboxylate exudation in acclimation to P deficiency in white lupin (Lupinus albus L.), their role under other nutrient deficiencies and their ecological significance are still poorly understood. In the present work, differences in proteoid root formation, exudation of carboxylates by root clusters, non-proteoid and proteoid root tips by using a non-destructive method, and concentrations of organic acids in the tissues of plants grown in the absence of P, Fe or K were studied. Proton release from roots increased soon after withdrawing Fe from the medium; within three days the solution pH decreased from 6 to about 4, and this increased release in protons continued until the end of the experiment. Acidification appeared much later, on the 10th day and the 14th day after withdrawal of P and K, respectively; the extent of the acidification was also weaker than under –Fe (5.2 for –P and 5.7 for control on the 10th day; 6.0 for –K and 6.1 for control on the 14th day). Root clusters formed when plants were grown under –P and –Fe, but not under –K conditions. The root clusters developed sooner under –Fe conditions, but the number of clusters was far less than under –P. Under P deficiency, root clusters released mainly citrate, but also some malate; while the major organic acid released by root tips of both non-proteoid and proteoid roots was malate. However, under Fe deficiency, the majority of the organic acids exuded both by the root clusters and root tips was malate, whereas only a small amount of citrate was detected. The release rate of citrate by – P root clusters was greater than that by – Fe root clusters. Moreover, the release rate of malate was greater in –Fe root clusters than in –P root clusters, but the opposite was found in proteoid root tips, i.e. faster in –P than in –Fe proteoid root tips. The significances of proteoid root formation and release of organic acids in acclimation to different nutrient deficiencies for white lupin plants are discussed.  相似文献   

13.
Self-rooted, 10-month-old, uniform tea [Camellia sinensis (L.) O. Kuntze cv. Huangguanyin] plants were supplied for 17 weeks with 0, 40, 80, 160, 400, or 1000μM phosphorus (P) to investigate the effects of P supply on root citrate and malate release, the concentrations of malate and citrate and the activities of acid-metabolizing enzymes in leaves and roots. Root malate release and accumulation was induced by both 0 and 40μM P, while root citrate release and accumulation was induced only by 0μM P. Phosphorus-deficiency-induced malate and citrate release coincided with higher concentrations of root malate and citrate. The higher concentrations of malate and citrate were accompanied by increased activities of phosphoenolpyruvate carboxylase (PEPC), phosphoenolpyruvate phosphatase (PEPP), citrate synthase (CS) and NAD-malic enzyme (NAD-ME) and decreased activities of pyruvate kinase (PK), NADP-ME and NADP-isocitrate dehydrogenase (NADP-IDH) in roots. In contrast to roots, malate accumulated in the leaves only in response to 0μM P, and no change was observed in citrate levels. The P-deficiency-induced leaf malate accumulation coincided with increased activities of NADP-ME, NAD-ME and PK. Overall, the P-deficiency-induced changes in organic acid (OA) metabolism differed between roots and leaves. The high tolerance of tea plants to P-deficiency might be involved in two major processes: (a) increasing the availability of P by inducing root release of OA anions; and (b) improving the ability to use P efficiently by inducing bypass enzymes involved in tissue P economy.  相似文献   

14.
Lamont  Byron B. 《Plant and Soil》2003,248(1-2):1-19
Hairy rootlets, aggregated in longitudinal rows to form distinct clusters, are a major part of the root system in some species. These root clusters are almost universal (1600 species) in the family Proteaceae (proteoid roots), with fewer species in another seven families. There may be 10–1000 rootlets per cm length of parent root in 2–7 rows. Proteoid roots may increase the surface area by over 140× and soil volume explored by 300× that per length of an equivalent non-proteoid root. This greatly enhances exudation of carboxylates, phenolics and water, solubilisation of mineral and organic nutrients and uptake of inorganic nutrients, amino acids and water per unit root mass. Root cluster production peaks at soil nutrient levels (P, N, Fe) suboptimal for growth of the rest of the root system, and may cease when shoot mass peaks. As with other root types, root cluster production is controlled by the interplay between external and internal nutrient levels, and mediated by auxin and other hormones to which the process is particularly sensitive. Proteoid roots are concentrated in the humus-rich surface soil horizons, by 800× in Banksia scrub-heath. Compared with an equal mass of the B horizon, the A1 horizon has much higher levels of N, P, K and Ca in soils where species with proteoid root clusters are prominent, and the concentration of root clusters in that region ensures that uptake is optimal where supply is maximal. Both proteoid and non-proteoid root growth are promoted wherever the humus-rich layer is located in the soil profile, with 4× more proteoid roots per root length in Hakea laurina. Proteoid root production near the soil surface is favoured among hakeas, even in uniform soil, but to a lesser extent, while addition of dilute N or P solutions in split-root system studies promotes non-proteoid, but inhibits proteoid, root production. Local or seasonal applications of water to hakeas initiate non-proteoid, then proteoid, root production, while waterlogging inhibits non-proteoid, but promotes proteoid, root production near the soil surface. A chemical stimulus, probably of bacterial origin, may be associated with root cluster initiation, but most experiments have alternative interpretations. It is possible that the bacterial component of soil pockets rich in organic matter, rather than their nutrient component, could be responsible for the proliferation of proteoid roots there, but much more research on root cluster microbiology is needed.  相似文献   

15.
Phosphoenolpyruvate carboxylase (PEPC) and citrate synthase (CS) are two key enzymes in organic acid synthesis metabolism. In the present study, a cytoplasmic form of CS from tobacco and a mutant (with reduced sensitivity to organic acid inhibition) PEPC from Synechococcus vulcanus were overexpressed simultaneously using a light-inducible promoter in tobacco leaves. The analysis for enzyme activity showed that CS and PEPC enzyme activities were increased by 235% to 257% and 218% to 236% in the selected cs and pepc (double-gene) overexpression lines, respectively, compared with those in the wild-type plants (WT). The measurement for the relative root elongation rate of the tobacco plants exposed to 30???M aluminum (Al) indicated that Al tolerance in the double-gene overexpression lines was stronger than that of the transgenic cs or pepc lines and WT plants. The 13C-NMR analysis with NaH13CO3 showed that overexpression of CS and PEPC in the transgenic tobacco successfully constructed a new citrate synthesis pathway. Under the conditions with Al stress, the amount of citrate secreted from the double-transgenic tobacco roots was the largest among the tested plants. When grown on sandy soil supplied with a nutritional solution containing 500???M Al, the growth of the double-transgenic tobacco was better than that of the transgenic cs or pepc tobacco and WT, and their root biomass was the highest among the tested plants. These results demonstrated that construction of a new citrate synthesis pathway by simultaneous overexpression of CS and PEPC in the cytoplasm of transgenic plant leaves could enhance Al resistance in plants.  相似文献   

16.

Background and aims

Low phosphorus (P) bioavailability and aluminum (Al) toxicity are two major constraints to plant growth in acid soil. To improve the tolerance of Brassica napus to Al toxicity and P deficiency, we generated transgenic canola (Brassica napus cv Westar) lines overexpressing a Pseudomonas aeruginosa citrate synthase (CS) gene and then investigated the effects of CS gene overexpressing in canola on enhancing tolerance to the two constraints.

Methods

The vector construction and plant transformation, molecular identification, estimation of extracellular and cellular citrate and malate concentrations, enzyme activity and gene expression analyse and Al tolerance and P acquisition assays were conducted using both hydroponics and soil culturing in the study.

Results

Both the root citrate and malate concentrations and their exudations in the two transgenic lines significantly increased compared with wild type (WT) following exposure to Al. These increases may be attributed to higher activities of the CS, malate dehydrogenase (MDH) and phosphoenolpyruvate carboxylase (PEPC) enzymes in the TCA cycle and the expression of BnALMT and BnMATE in the transgenic plants following Al exposure. The primary root elongation and prolonged Al treatment (10 days) experiments revealed that the transgenic lines displayed enhanced levels of Al tolerance. In addition, they showed enhanced citrate and malate exudation when grown in P-deficient conditions. Moreover, the enzyme activities of the transgenic lines were significantly higher compared with WT in response to P-deficient stress. The soil culture experiment showed that the transgenic lines possessed improved P uptake from the soil and accumulated more P in their shoots and seeds when FePO4 was used as the sole P source.

Conclusions

These results indicate that the overexpression of the CS gene in B. napus not only leads to increased citrate synthesis and exudation but also changes malate metabolism, which confers improved tolerances to Al toxicity and P deficiency in the transgenic plants. These findings provide further insight into the dual effects of CS gene overexpression on Al toxicity and P deficiency in plants.  相似文献   

17.
White lupin (Lupinus albus L.) is able to acclimate to phosphorus deficiency by forming proteoid roots that release a large amount of citric acid, resulting in the mobilization of sparingly soluble soil phosphate in the rhizosphere. The mechanisms responsible for the release of organic acids have not been fully elucidated. In this study, we focused on the link between citrate and malate release and the release of H+ and other inorganic ions by proteoid roots of white lupin. The release of citrate was closely correlated with the release of H+, K+, Na+ and Mg2+, but not with that of Ca2+. The stoichiometric relationships between citrate release and the release of H+, K+, Na+ and Mg2+ were 1 : 1.3, 1 : 2.1, 1 : 1.5 and 1 : 0.47, respectively. Similar correlations were found between exudation of malate and cations. During 30 min incubation, fusicoccin addition stimulated H+ and malate release, but not citrate release. A concomitant stimulation of H+, malate and citrate release was measured after 60 min incubation. Vanadate inhibited the release of H+ and malate, but not that of citrate. Anthracene-9-carboxylic acid, an anion channel blocker, caused a concomitant decrease in release of citrate, malate and H+. We conclude that for export of citrate across the plasma membrane of proteoid root cells, H+ release is not strictly related to citrate release. Other cations such as K+ and Na+ can also serve as counterions for citrate release. In contrast, malate release shows a strong H+ release dependency.  相似文献   

18.
19.
Exudation of carboxylates represents one the most efficient strategies used by P-starved white lupin (Lupinus albus L.) to acquire phosphorus from sparingly soluble sources. This exudation occurs through proteoid root clusters, with citrate being the predominant organic acid released. The occasional detection of malate in whole root exudates suggests that this acid would also be released, but from tissues other than root clusters. To investigate the spatial and temporal pattern of exudation, citrate and malate exudation and concentration were measured in whole roots and root sections of white lupin, from seedling emergence to plant senescence due to P starvation. Both organic acids were detected in whole root exudates of P-stressed plants, and they were released at similar rates throughout the experiment. Malate was predominantly exuded from apices of both seedling taproots and proteoid roots, whereas citrate exudation was restricted to proteoid root clusters. Studies directed to address the association between carboxylate exudation and concentration in proteoid root clusters showed a non-linear response for citrate, within the range of 7 to 23 mol g–1 fresh weight. This association was further assessed by altering citrate concentration in the whole root. Adding P to 24-day-old P-starved plants reduced citrate concentration and exudation to the level of the control P-fed plants, demonstrating that citrate exudation and concentration are associated. Malate exudation and concentration did not correlate significantly. Results indicate that citrate release by P-starved white lupin would occur whenever a certain threshold of citrate concentration is attained, and that the sites, the rates and the span of transient exudation depend on the physiological age of the tissue.  相似文献   

20.
Acid phosphatase activity in phosphorus-deficient white lupin roots   总被引:15,自引:0,他引:15  
White lupin ( Lupinus albus L.) develops proteoid roots when grown in phosphorus (P)-deficient conditions. These short, lateral, densely clustered roots are adapted to increase P availability. Previous studies from our laboratory have shown proteoid roots have higher rates of non-photosynthetic carbon fixation than normal roots and altered metabolism to support organic acid exudation, which serves to solubilize P in the rhizosphere. The present work indicates that proteoid roots possess additional adaptations for increasing P availability and possibly for conserving P in the plant. Roots from P-deficient (–P) plants had significantly greater acid phosphatase activity in both root extracts and root exudates than comparable samples from P-sufficient (+P) plants beginning 10 d after emergence. The increase in activity in –P plants was most pronounced in the proteoid regions. In contrast, no induction of phytase activity was found in –P plants compared to +P plants. The number of proteoid roots present was not affected by the source of phosphorus supplied, whether organic or inorganic forms. Adding molybdate to the roots increased the number of proteoid roots in plants supplied with organic P, but not inorganic P. Increased acid phosphatase activity was detected in root exudates in the presence of organic P sources. Native-polyacrylamide gel electrophoresis demonstrated that under P-deficient conditions, a unique isoform of acid phosphatase was induced between 10 and 12 d after emergence. This isoform was found not only within the root, but it comprised the major form exuded from proteoid roots of –P plants. The fact that exudation of proteoid-root-specific acid phosphatase coincides with proteoid root development and increased exudation of organic acids indicates that white lupin has several coordinated adaptive strategies to P-deficient conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号