共查询到4条相似文献,搜索用时 0 毫秒
1.
Carmina Montiel Eduardo Terrs Jos-Manuel Domínguez Jorge Aburto 《Journal of Molecular Catalysis .B, Enzymatic》2007,48(3-4):90-98
Silica-based materials have been used as effective supports for the immobilization of enzymes. Moreover, the understanding on the oxidation of sulfur compounds by immobilized chloroperoxidase represents a step further in the development of a biocatalytic desulfurization process of fossil fuels. Here, chloroperoxidase from Caldariomyces fumago was immobilized on amorphous and structured silica-based materials either physically or covalently using an organosilane derivative for the oxidation of a recalcitrant organosulfur compound currently found in gas oil and diesel, such as 4,6-dimethyldibenzothiophene (4,6-DMDBT). Such materials were characterized by FTIR, N2-adsorption, XRD, SEM and TEM. We have found that the chemical differences on the silanol/siloxane groups of SG/67 and SBA15 mesoporous materials deeply modify the enzymatic load, activity, thermal stability and reusability. The physical immobilization of CPO was characterized by a high adsorption capacity (qm) and affinity constants (Km) when compared to the covalent approach, but it resulted more sensitive to temperature than free, the silanized and covalently immobilized enzyme. The thermal residual activity as well as reusability of CPO were first improved by silanization, then by covalent immobilization in a support with a large pore size and high silanol/siloxane ratio. 相似文献
2.
A sigmoidal kinetic behavior of chloroperoxidase for the oxidation of 4,6-dimethyldibenzothiophene (4,6-DMDBT) in water-miscible organic solvent is for the first time reported. Kinetics of 4,6-DMDBT oxidation showed a cooperative profile probably due to the capacity of chloroperoxidase to recognize a substrate dimer (pi-pi dimer) in its active site. Experimental evidence is given for dimer formation and its presence in the active site of chloroperoxidase. The kinetic data were adjusted for a binding site able to interact with either monomer or dimer substrates, producing a cooperative model describing a one-site binding of two related species. Determination of kinetics constants by iterative calculations of possible oxidation paths of 4,6-DMDBT suggests that kinetics oxidation of dimer substrate is preferred when compared to monomer oxidation. Steady-state fluorometry of substrate in the absence and presence of chloroperoxidase, described by the spectral center of mass, supports this last conclusion. 相似文献
3.
Takeshi Shimomura Tetsuji Itoh Touru Sumiya Fujio Mizukami Masatoshi Ono 《Enzyme and microbial technology》2009,45(6-7):443-448
Acetylcholine sensor is successfully prepared by using immobilized enzymes, i.e., acetylcholinesterase and choline oxidase within separate hybrid mesoporous silica membranes with 12 nm pore diameter (F127M). The measurement was based on the detection of hydrogen peroxide produced by two sequential enzyme reactions. The determination range and the response time are 6.0–800 μM and within approximately 3 min, respectively. The sensor is very stable compared to free enzymes and 80% of the initial response was maintained even after storage for 80 days. These results show that two enzymes are successfully immobilized and well stabilized, and at the same time, two sequential enzyme reactions efficiently proceed within the separate hybrid mesoporous membranes. Further, we studied the possible detection of organophosphorus pesticides in terms of the inhibition of acetylcholinesterase activity, i.e., the decrease of current response, and demonstrated that the nanomolar concentrations of pesticide (DZN-oxon) can be detected with our sensor. 相似文献
4.
Shigehiro Ishizuka Tadashi Sakata Satoshi Sawata Shigeto Ikeda Hisao Sakai Chisato Takenaka Nobuaki Tamai Shin-ichi Onodera Takanori Shimizu Kensaku Kan-na Nagaharu Tanaka Masamichi Takahashi 《Biogeochemistry》2009,92(3):281-295
To clarify the reason for the higher CH4 uptake rate in Japanese forest soils, twenty-seven sites were established for CH4 flux measurement. The first order rate constant for CH4 uptake was also determined using soil core incubation at 14 sites. The CH4 uptake rate had a seasonal fluctuation, high in summer and low in winter, and the rate correlated with soil temperature at
17 sites. The annual CH4 uptake rates ranged from 2.7 to 24.8 kg CH4 ha−1 y−1 (the average of these rates was 9.7 or 10.9 kg CH4 ha−1 y−1, depending on method of calculation), which is somewhat higher than the uptake rates reported in previous literature. The
averaged CH4 uptake rate correlated closely with the CH4 oxidation rate of the topsoil (0–5 cm) in the study sites. The CH4 oxidation constant of the topsoil was explained by a multiple regression model using total pore volume of the soil, nitrate
content, and C/N ratio (p < 0.05, R
2 = 0.684). This result and comparison with literature data suggest that the high CH4 uptake rate in Japanese forest soils depends on the high porosity probably due to volcanic ash parent materials. According
to our review of the literature, the CH4 uptake rate in temperate forests in Europe is significantly different from that in Asia and North America. A new global CH4 uptake rate in temperate forests was estimated to be 5.4 Tg y−1 (1 SE is 1.1 Tg y−1) on a continental basis. 相似文献