首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The investigation dealt with starch accumulation in four species of Cuscuta (Cuscuta campestris, C. indecora, C. planiflora and C. reflexa), a leafy mistletoe (Dendrophthoe falcata) and a chlorophyll-lacking root parasite (Orobanche aegyptiaca). The highest content of starch occurred In O. aegyptiaca, with a maximum of 45 per cent of dry weight Starch in Cuscuta filaments and mistletoe leaves showed a maximum of about 10 per cent of dry weight. The starch content varied along the length of the Cuscuta vine, with a maximum in the apical region. Orobanche had a higher starch content when it was still submerged than it was fully developed. Cuscuta vines did not show any marked diurnal alteration in the starch content. The content of ethanol-soluble carbohydrate was only a tenth of the starch in Orobanche, but was relatively higher in the other parasites. the neutral sugars in Cuscuta filaments were sucrose and glucose, whereas fructose was also present in mistletoe and Orobanche. Raffinose and stachyose were absent or present only ill traces in parasite tissue. Starch granules from Cuscuta and Orobanche bad ADPG/UDPG-starch synthetase activity and homogenates starch phosphorylase activity. The former enzyme appeared to be responsible for synthesis of starch and the latter for utilization. The four different species of Cuscnta, growing on alfalfa, had more or less the same activity of starch synthetase and also of phosphorylase activity. Hosts infected by Cuscuta had significantly less starch per plant than the controls. A characteristic feature of invasion by Cuscuta and Orobanche was increased phosphorylase activity in the host tissues. The protein content of the tissues of Cuscuta and Orobanche was of a lower level than that of the host shoot system or foliage, indicating that the parasite differed from the host in having a higher carbon (of starch) to nitrogen (of protein) ratio.  相似文献   

2.
Determination of different carbohydrate and nitrogen fractions was made in tomato (Lycopersicum esculentum Mill.) and mustard (Brassica campestris L.) serving as hosts for Orobanche cernua and O. aegyptiaca respectively. Shoots of Orobanche were also subjected to such analyses. Infection raised the level of total reducing and total sugar in the host with a simultaneous decrease in the level of acid-hydrolyzable and total carbohydrates in the constituent organs of infected hosts. This has been explained to be due to predominance of hydrolytic activity in the infected host. Infection also brought about a depression in the proportion of sucrose to the pool of total sugar in the host. This was also possibly due to predominance of hydrolytic processes and retardation in the synthetic processes. Higher concentration of acid-hydrolyzable and total carbohydrates in Orobanche than in the host indicated a high demand for sugars by the parasite. The insignificant differences between the relative proportions of different nitrogen fractions to the pool of total nitrogen in healthy and infected hosts indicated that nitrogen metabolism was not deranged in any way due to infection. Orobanche always had a lower concentration of total soluble and total nitrogen than the host root.  相似文献   

3.
Parasitic angiosperms are an ecologically and economically important group of plants. However our understanding of the basis for host specificity in these plants is embryonic. Recently we investigated host specificity in the parasitic angiosperm Orobanche minor, and demonstrated that this host generalist parasite comprises genetically defined races that are physiologically adapted to specific hosts. Populations occurring naturally on red clover (Trifolium pratense) and sea carrot (Daucus carota subsp. gummifer) respectively, showed distinct patterns of host specificity at various developmental stages, and a higher fitness on their natural hosts, suggesting these races are locally adapted. Here we discuss the implications of our findings from a broader perspective. We suggest that differences in signal responsiveness and perception by the parasite, as well as qualitative differences in signal production by the host, may elicit host specificity in this parasitic plant. Together with our earlier demonstration that these O. minor races are genetically distinct based on molecular markers, our recent data provide a snapshot of speciation in action, driven by host specificity. Indeed, host specificity may be an underestimated catalyst for speciation in parasitic plants generally. We propose that identifying host specific races using physiological techniques will complement conventional molecular marker-based approaches to provide a framework for delineating evolutionary relationships among cryptic host-specific parasitic plants.Key words: host specificity, parasitic plant, broomrape, orobanche, speciation  相似文献   

4.
The respiratory rate of the roots of mustard (Brassica cam-pestris L.) and tomato (Lycopersicum esculentum Mill.) serving as hosts for the total root parasites Orobanche aegyptiaca Pers. and O.cernua Loefll. was measured using Warburg manometric technique. At the same time determinations were made of the respiration of the apical, basal and root regions of the parasites. The effects of sodium fluoride, malonic acid, sodium azide and DNP (2,4-dinitrophenol) on the rate of respiration of the host roots as well as of the parasites were studied. The Orobanche infection results in a marked increase in the respiratory rate near the host-parasite contact region. The damaging effect of infection seems to be due mainly to a continuous flow of water, minerals and metabolites from host to parasite. The haustorial invasion creates an obstruction in the translocation of metabolites. The respiration rate is lower in Orobanche than in the host, which might be related to its slower growth rate, inefficient oxidative processes and an escaping of certain energy-requiring interconversion processes. Roots of O. aegyptiaca are more well-developed and have higher rate of respiration. They can absorb more water and minerals from the soil. This fact might be connected with the specificity of the two species. NaF and malonic acid inhibit the respiration to a similar extent in healthy and infected roots. This indicates that the pathway of respiration does not change materially after infection. The EMP and Krebs cycle seem to operate at a lower intensity in Orobanche, which is proved by the lower inhibition of the respiration as compared to in the host. Azide causes a stronger reduction of the respiration in infected than in healthy roots. It would imply that the infection stimulates the activity of metal containing oxidases. The weaker inhibition of the respiration in Orobanche tissues indicates a mediation of other enzymes in the oxidation processes than in the host. The respiration is less stimulated by DNP in infected than in healthy roots. Contrary to the general effect of DNP, this substance decreases the O2 uptake in the parasite tissues. This fact may be explained by the occurrence of exceptionally high amounts of endogenous phenolic compounds and an insufficient production of ATP in the parasite.  相似文献   

5.
Many parasitic angiosperms have a broad host range and are therefore considered to be host generalists. Orobanche minor is a nonphotosynthetic root parasite that attacks a range of hosts from taxonomically disparate families. In the present study, we show that O. minor sensu lato may comprise distinct, genetically divergent races isolated by the different ecologies of their hosts. Using a three‐pronged approach, we tested the hypothesis that intraspecific taxa O. minor var. minor and O. minor ssp. maritima parasitizing either clover (Trifolium pratense) or sea carrot (Daucus carota ssp. gummifer), respectively, are in allopatric isolation. Morphometric analysis revealed evidence of divergence but this was insufficient to define discrete, host‐specific taxa. Intersimple sequence repeat (ISSR) marker‐based data provided stronger evidence of divergence, suggesting that populations were isolated from gene flow. Phylogenetic analysis, using sequence‐characterized amplified region (SCAR) markers derived from ISSR loci, provided strong evidence for divergence by clearly differentiating sea carrot‐specific clades and mixed‐host clades. Low levels of intrapopulation SCAR marker sequence variation and floral morphology suggest that populations on different hosts are probably selfing and inbreeding. Morphologically cryptic Orobanche taxa may therefore be isolated from gene flow by host ecology. Together, these data suggest that host specificity may be an important driver of allopatric speciation in parasitic plants.  相似文献   

6.
Infection by Cuscuta and Orobanche causes significant losses in dry solids and protein content in host plant or plant part. Changes occur in phosphatase activity towards fructose-1,6-diphosphate at alkaline pH and β-glycerophosphate at acid pH, expressed per mg protein or g fresh tissue. The leaves of all hosts infected by Orobanche show an increase in the alkaline fructosediphosphatase activity, whereas as far as the infection by Cuscuta is concerned the general response is a decrease in the enzyme in the shoots. The alterations in the phosphatase activity towards β-glycerophosphate at acid pH in the shoots are not consistent. However, there is a marked increase in the acid phosphatase activity against β-glycerophosphatase in the roots of the infected hosts. The significance of these findings has been discussed in the light of host-parasite interrelationship.  相似文献   

7.
The acid-insoluble phosphate in the tissues of three species of Cuscuta and of Orobanche cernua and in the infected hosts has been fractionated into phospholipids, RNA, DNA and phosphoprotein. Infection by parasites was attended, in general, by a decrease in RNA and an increase in DNA.  相似文献   

8.
Broomrapes (Orobanche spp.) are parasitic angiosperms, which attach to the roots of the hosts to take water and nutrients from them. No complete control measures are available to date, but breeding for resistance remains as one of the most feasible and environmentally friendly methods. However, the mechanisms governing the interaction between these parasites and the host are not yet well understood. We studied the cellular changes associated with the resistance to Orobanche crenata in faba bean as mechanisms involved or responsible for resistance. Two cultivars of faba bean, resistant and susceptible to O. crenata infection, were used. The evolution of the infection and the changes in the cell and tissue organisation and wall components of the host cells were followed and evaluated in both genotypes. Samples of compatible and incompatible interactions were fixed and sectioned, and specific cytochemical methods for different cell components were applied, results being analysed under light and epifluorescence microscopy. A higher proportion of O. crenata seedlings unable to penetrate the root was found on the resistant genotype. Reinforcement of cell walls by callose deposition hampers parasite penetration through the cortex. Lignification of endodermal cells prevents further penetration of the parasite into the central cylinder.  相似文献   

9.
In oxygen‐deficient waters, the difficulties of oxygen uptake in gill parasites and their fish hosts may influence host and parasite densities, site selection by the parasite, and effects of the parasite on host condition. This study quantified the prevalence and intensity of the gill monogenean Neodiplozoon polycotyleus in the African cyprinid fish Barbus neumayeri from an intermittent forest stream in western Uganda. Oxygen levels were low in the stream over the 12‐month study, averaging only 2.5 mg litre?1 (monthly range = 1.2–4.3 mg litre?1). However, parasite prevalence was high (47.2%), suggesting high tolerance to low oxygen in N. polycotyleus. The prevalence of parasites varied with host body size, with the highest frequency of occurrence in the middle size classes. Prevalence also varied over the year; seasonal peaks of rainfall coincided with a lower frequency of N. polycotyleus. The significantly nonrandom frequency distribution of parasites among hosts suggests regulation of parasite numbers. Of the hosts infected, 37.1% harboured one N. polycotyleus parasite, and 62.9% harboured two parasites. No fish were infected with more than two diplozoons. There was evidence for strong site specificity by N. polycotyleus within hosts; 77.7% of the parasites were located on the filaments of the second gill arch, which may relate to increased oxygen availability. In addition, only one of the 178 infected fish had more than one parasite on one side of the branchial basket. Although N. polycotyleus is undoubtedly parasitic, we found no evidence of a negative parasitic effect on the condition or reproductive status of B. neumayeri.  相似文献   

10.
Niche theory predicts that species which share resources should evolve strategies to minimise competition for those resources, or the less competitive species would be extirpated. Some plant species are constrained to co-occur, for example parasitic plants and their hosts, and may overlap in their pollination niche if they flower at the same time and attract the same pollinators. Using field observations and experiments between 1996 and 2006, we tested a series of hypotheses regarding pollination niche overlap between a specialist parasitic plant Orobanche elatior (Orobanchaceae) and its host Centaurea scabiosa (Asteraceae). These species flower more or less at the same time, with some year-to-year variation. The host is pollinated by a diverse range of insects, which vary in their effectiveness, whilst the parasite is pollinated by a single species of bumblebee, Bombus pascuorum, which is also an effective pollinator of the host plant. The two species therefore have partially overlapping pollination niches. These niches are not finely subdivided by differential pollen placement, or by diurnal segregation of the niches. We therefore found no evidence of character displacement within the pollination niches of these species, possibly because pollinators are not a limiting resource for these plants. Direct observation of pollinator movements, coupled with experimental manipulations of host plant inflorescence density, showed that Bombus pascuorum only rarely moves between inflorescences of the host and the parasite and therefore the presence of one plant is unlikely to be facilitating pollination in the other. This is the first detailed examination of pollination niche overlap in a plant parasite system and we suggest avenues for future research in relation to pollination and other shared interactions between parasitic plants and their hosts.  相似文献   

11.
If parasites decrease the fitness of their hosts one could expect selection for host traits (e.g. resistance and tolerance) that decrease the negative effects of parasitic infection. To study selection caused by parasitism, we used a novel study system: we grew host plants (Urtica dioica) that originated from previously parasitized and unparasitized natural populations (four of each) with or without a holoparasitic plant (Cuscuta europaea). Infectivity of the parasite (i.e. qualitative resistance of the host) did not differ between the two host types. Parasites grown with hosts from parasitized populations had lower performance than parasites grown with hosts from unparasitized populations, indicating host resistance in terms of parasite’s performance (i.e. quantitative resistance). However, our results suggest that the tolerance of parasitic infection was lower in hosts from parasitized populations compared with hosts from unparasitized populations as indicated by the lower above‐ground vegetative biomass of the infected host plants from previously parasitized populations.  相似文献   

12.
The endogenous levels of abscisic acid in the parasitic phanerogamsArceuthobium oxycedri (DC) Bieb.,Cassytha filiformis L.,Lathraea squamaria L.,Melampyrum pratense L.,Orobanche hederae Duby., andViscum album L. were investigated. In general, the content of abscisic acid was high in parasites which deprive their hosts of both phloem- and xylem-transported substances and much lower in those that deprive their hosts of sap from the xylem only. Within the parasites studied in more depth (e.g.,Orobanche hederae, Lathraea squamaria, andMelampyrum pratense) the highest abscisic acid levels were found in their sink regions, especially in their inflorescences. It is suggested that a high concentration of abscisic acid is associated with plant tissues showing a high demand for phloem-transported substances. The possible role of abscisic acid in such tissues is discussed.  相似文献   

13.
The effects of Orobanche infection on the growth and mineral compostition of the host were studied. Parallel observations were made in host and parasite. Orobanche infection reduces the height of main shoot, the length of root, the number of branches, and the number and total area leaves per plant. Consequently the fresh and dry weight of the host is also decreased. Infection affects NAR and LAR only slightly but reduces RGR and RLGR at a later period of infection. The retardation in the growth of host seems to be due mainly to a continuous extraction of metabolites and inorganic nutrients. Infection increases the nitrogen, calcium and magnesium content in the host, especially in the leaves. This fact is connected with the retarded growth in the host. The process of absorption is probably not changed. The phosphorus and potassium contents diminish in the infected host, a fact related to the higher translocation to the parasite. The Orobanche plants grow faster during early stages and accumulate 88 % of total dry matter before flowering, The growth stages of Orobanche do not coincide with those of the host suggesting that the parasite is capable of synthesizing its own growth substances. Studies with 32P show that the flow of minerals is mainly in the direction from host to parasite. The major part of the requirement of the parasite is met by the host. Orobanche maintains a higher phosphorus and potassium content in its tissues than the host, while the nitrogen, calcium and magnesium content is lower.  相似文献   

14.
15.
1. Recently, the potential for parasites to influence the ecology and evolution of their zooplankton hosts has been the subject of increasing study. However, most research to date has focussed on Daphnia hosts, and the potential for parasites to influence other zooplankton taxa remains largely unstudied. 2. During routine sampling of zooplankton in a eutrophic lake, we observed that the rotifer Asplanchna girodi was often infected with a parasitic oomycete. Epidemics of this parasite occurred frequently, with three separate events in a single year. Prevalence at peak infection ranged from 29 to 41% and epidemics lasted from 17 to 56 days. Our data indicate that high densities of the host population are required for epidemics to occur. 3. Our morphological and molecular analyses suggest that this parasite is in the genus Pythium. Most Pythium spp. are plant pathogens, but our study supports recent work on Daphnia, suggesting that Pythium spp. are also important parasites of zooplankton. 4. As the parasite in this study was recalcitrant to cultivation, we developed an alternative method to verify its identity. Our approach used quantitative PCR to show that the ribosomal sequences identified increased with increasing density of infected hosts and, thus, were associated with the parasite. This approach should be generally applicable to other plankton parasites that are difficult to cultivate outside their hosts. 5. Infections significantly reduced host fecundity, lifespan and population growth rate. As a result of the virulence of this parasite, it is likely to influence the population ecology and evolution of its Asplanchna host, and may be a useful model system for studies on host–parasite coevolutionary dynamics.  相似文献   

16.
Orobanche cernua, a holoparasite, was harvested from different hosts, namely, Solanum melongena, Petunia hybrida, Lycopersicum esculentum, Solanum nigrum and Datura metel. Mitochondrial particles were isolated and they were evaluated in terms of the marker enzyme, cytochrome c oxidase, and protein in the mitochondrial fraction. Protein levels in whole homogenate and mitochondrial fraction of parasite growing on different host plants did not vary significantly, whereas the recovery of protein (% of whole homogenate) in the mitochondrial fraction of parasite growing on D. metel was higher. Cytochrome c oxidase activity in parasites growing on the three host plants varied, being highest when the parasite grew on S. melongena, followed sequentially by that on P. hybrida and D. metel. Protein in whole homogenate and mitochondrial fraction was significantly lower, 25–36% and 15–33%, respectively, in distal region when compared with the proximal region. Similarly, cytochrome oxidase and respiratory activity was significantly lower, 23–34% and 18–23%, respectively, in the distal region of the parasite. In addition, variations in cytochrome oxidase and respiratory activity in the proximal and distal regions of the parasite growing on different hosts was also significant. Results indicated that mitochondria in haustoria‐bearing proximal region of Orobanche scape play a special role to meet the metabolic demand of the parasite.  相似文献   

17.
Monarch butterflies (Danaus plexippus) are parasitized by the protozoan Ophryocystis elektroscirrha throughout their geographical range. Monarchs inhabiting seasonally fluctuating environments migrate annually, and parasite prevalence is lower among migratory relative to non‐migratory populations. One explanation for this pattern is that long‐distance migration weeds out infected animals, thus reducing parasite prevalence and transmission between generations. In this study we experimentally infected monarchs from a migratory population and recorded their long‐distance flight performance using a tethered flight mill. Results showed that parasitized butterflies exhibited shorter flight distances, slower flight speeds, and lost proportionately more body mass per km flown. Differences between parasitized and unparasitized monarchs were generally not explained by individual variation in wing size, shape, or wing loading, suggesting that poorer flight performance among parasitized hosts was not directly caused by morphological constraints. Effects of parasite infection on powered flight support a role for long‐distance migration in dramatically reducing parasite prevalence in this and other host–pathogen systems.  相似文献   

18.
Secondary pit connections are common between cells of hosts and parasites in the widespread phenomenon of red algal parasitism. The DNA-specific fluorochrome 4′,-6-diamidino-2-phenylindole (DAPI) reveals that in host-parasite secondary pit connection (SPC) formation between the parasitic red alga Choreocolax polysiphoniae and its host Polysiphonia confusa, a nucleus and other cytoplasmic components of the parasite are delivered into the cytoplasm of a host cell. Host cells receive large numbers of parasite nuclei and these, apparently arrested in G1, are maintained intact in host cells for periods of several weeks. Within these enlarged, differentiated cells, starch accumulates and cytoplasmic organelles proliferate as the central vacuole decreases in size. Host nuclear DNA synthesis is stimulated in the infected host cell, resulting in an increase in the number of host nuclei, or an increase in DNA in each of the existing host nuclei (i.e. somatic polyploidy). Occasionally, infected host cells will recommence division and engender a new host branch. Microspectrofluorometry of nuclear DNA quantitatively confirms not only the identity and transfer of parasite nuclei to host cells, but also the transfer of parasite nuclei to other parasite cells. Measurements also reveal that the single nucleus of Choreocolax becomes progressively more polyploid as cells become larger and more highly differentiated. Secondary pit connection formation between Choreocolax and Polysiphonia provides the mechanism for the transfer of parasite genetic information (via the parasite nucleus and cytoplasm) into the host. The parasite nuclei may thereby control and redirect the physiology of the host for the benefit of the parasite.  相似文献   

19.
Although imaging the live Trypanosoma cruzi parasite is a routine technique in most laboratories, identification of the parasite in infected tissues and organs has been hindered by their intrinsic opaque nature. We describe a simple method for in vivo observation of live single‐cell Trypanosoma cruzi parasites inside mammalian host tissues. BALB/c or C57BL/6 mice infected with DsRed‐CL or GFP‐G trypomastigotes had their organs removed and sectioned with surgical blades. Ex vivo organ sections were observed under confocal microscopy. For the first time, this procedure enabled imaging of individual amastigotes, intermediate forms and motile trypomastigotes within infected tissues of mammalian hosts.  相似文献   

20.
Why should the hosts of brood parasites accept and raise parasitic offspring that differ dramatically in appearance from their own? There are two solutions to this evolutionary enigma. (1) Hosts may not yet have evolved the capability to discriminate against the parasite, or (2) parasite-host systems have reached an evolutionary equilibrium. Avian brood parasites may either gain renesting opportunities or force their hosts to raise parasitic offspring by destroying or preying upon host eggs or nestlings following host ejection of parasite offspring. These hypotheses may explain why hosts do not remove parasite offspring because only then will hosts avoid clutch destruction by the cuckoo. Here we show experimentally that if the egg of the parasitic great spotted cuckoo Clamator glandarius is removed from nests of its magpie Pica pica host, nests suffer significantly higher predation rates than control nests in which parasite eggs have not been removed. Using plasticine model eggs resembling those of magpies and observations of parasites, we also confirm that great spotted cuckoos that have laid an ejected egg are indeed responsible for destruction of magpie nests with experimentally ejected parasite eggs. Cuckoos benefit from destroying host offspring because they thereby induce some magpies to renest and subsequently accept a cuckoo egg.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号