首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fibroblasts stimulated by cytokines released the chemokine and recruited the infiltrating cells, including eosinophils, that play a key role in the pathogenesis of airway disease. We established the human fibroblast lines showing high Syk expression and the lines showing low Syk expression from pieces of nasal polyp. IL-1 induces the interaction of TNFR-associated factor (TRAF) 6 with IL-1R-associated kinase, which is rapidly recruited to the IL-1R after IL-1 induction, whereas TRAF2 participates in TNF-alpha-signaling. In the present study, we found that Syk played a different role in IL-1- and TNF-alpha-induced chemokine production through a signaling complex involving Syk and TRAF6. Overexpression of wild-type Syk by gene transfer enhanced RANTES production from nasal fibroblasts stimulated with IL-1. The decrease of Syk expression by the administration of Syk antisense inhibited RANTES production in response to IL-1. However, the change of Syk expression did not affect RANTES production by TNF-alpha stimulation. We concluded that Syk is required for the IL-1-induced chemokine production through the association with TRAF-6 in fibroblasts of nasal polyps.  相似文献   

2.
Toll-like receptor 4 (TLR4) induces an innate immune response in mammals by recognizing lipopolysaccharide (LPS), a component of the cell wall of Gram-negative bacteria. In this study, we show that tyrosine kinase Syk constitutively associates with TLR4 in THP-1 cells. As previously reported in peripheral blood mononuclear cells, TLR4 gets inducibly tyrosine phosphorylated upon LPS engagement in THP-1 cells. Piceatannol, a pharmacological inhibitor of the tyrosine kinase Syk, abrogates TLR4 tyrosine phosphorylation at low doses. The kinetics of TLR4 tyrosine phosphorylation in THP-1 cells coincides with an early wave of Syk tyrosine phosphorylation. Additionally, serine threonine kinase interleukin-1 (IL1) receptor-associated kinase 1 (IRAK-1) is transiently recruited to the complex containing adaptor molecule MyD88, TLR4 and Syk within 1 min of LPS engagement and dissociates by 30 min. Finally, the inhibition of Syk with piceatannol has no effect on LPS-mediated release of cytokines IL6, IL1beta, tumor necrosis factor-alpha, neither on chemokines macrophage inhibitory protein (MIP)1alpha, MIP1beta, monocyte chemoattractant protein -1, IL8, Groalpha and RANTES. However, IL10 and IL12p40 releases are significantly inhibited. Our findings implicate Syk as a novel modulator of LPS-mediated TLR4 responses in human monocytic cells and shed insight into the kinetics of early complex formation upon LPS engagement.  相似文献   

3.
The protein tyrosine kinase Syk is critically involved in immunoreceptor signaling in hematopoietic cells. Recent studies demonstrate Syk expression in nonhematopoietic cells, including fibroblasts, endothelial cells, hepatocytes, and breast epithelium. However, the role of Syk in these cells is uncertain. We hypothesized that Syk is expressed in respiratory epithelial cells (EC) and that it functions as a signaling molecule involved in inflammatory responses in the epithelium. With the use of immunohistochemistry, Western blot, PCR, and laser scanning confocal microscopy, Syk was detected in human, rat, and mouse bronchial epithelium in situ and in cultured human bronchial EC in primary cells and the cell lines HS-24 and BEAS-2B. Syk-dependent signaling pathways in EC were initiated by engagement of beta1-integrin receptors. Stimulation of beta1-integrin receptors by fibronectin or antibody cross-linking caused redistribution of Syk from a cytoplasmic to plasma membrane localization. In stimulated cells, Syk and beta1-integrin colocalized. In addition, following beta1-integrin receptor engagement, tyrosine phosphorylation of Syk was observed. Expression of the intercellular adhesion molecule-1 (ICAM-1) and production of IL-6, both important molecules in lung inflammation, was downregulated in EC treated with Syk small interfering RNA or Syk inhibitor piceatannol. We propose that Syk is involved in signaling pathways induced by integrin engagement in airway EC. Syk-mediated signaling regulates IL-6 and ICAM-1 expression and may be important in the pathophysiology of lung inflammation.  相似文献   

4.
BackgroundChronic rhinosinusitis with nasal polyps (CRSwNP) is a chronic inflammatory disease of the upper airways frequently associated with asthma. Bacterial infection is a feature of CRSwNP that can aggravate the disease and the response to glucocorticoid treatment.ObjectiveWe examined whether the bacterial product lipopolysaccharide (LPS) reduces glucocorticoid receptor (GR) function in control nasal mucosa (NM) fibroblasts and in nasal polyp (NP) fibroblasts from patients with CRSwNP and asthma.MethodsNP (n = 12) and NM fibroblasts (n = 10) were in vitro pre-incubated with LPS (24 hours) prior to the addition of dexamethasone. Cytokine/chemokine secretion was measured by ELISA and Cytometric Bead Array. GRα, GRβ, mitogen-activated protein-kinase phosphatase-1 (MKP-1) and glucocorticoid-induced leucine zipper (GILZ) expression was measured by RT-PCR and immunoblotting, GRα nuclear translocation by immunocytochemistry, and GRβ localization by immunoblotting. The role of MKP-1 and GILZ on dexamethasone-mediated cytokine inhibition was analyzed by small interfering RNA silencing.ResultsPre-incubation of nasal fibroblasts with LPS enhanced the secretion of IL-6, CXCL8, RANTES, and GM-CSF induced by FBS. FBS-induced CXCL8 secretion was higher in NP than in NM fibroblasts. LPS effects on IL-6 and CXCL8 were mediated via activation of p38α/β MAPK and IKK/NF-κB pathways. Additionally, LPS pre-incubation: 1) reduced dexamethasone’s capacity to inhibit FBS-induced IL-6, CXCL8 and RANTES, 2) reduced dexamethasone-induced GRα nuclear translocation (only in NM fibroblasts), 3) did not alter GRα/GRβ expression, 4) decreased GILZ expression, and 5) did not affect dexamethasone’s capacity to induce MKP-1 and GILZ expression. MKP-1 knockdown reduced dexamethasone’s capacity to suppress FBS-induced CXCL8 release.ConclusionThe bacterial product LPS negatively affects GR function in control NM and NP fibroblasts by interfering with the capacity of the activated receptor to inhibit the production of pro-inflammatory mediators. This study contributes to the understanding of how bacterial infection of the upper airways may limit the efficacy of glucocorticoid treatment.  相似文献   

5.
The role of human leukocyte antigen (HLA) class II molecules on non-antigen presenting cells has been a matter of controversy. We recently reported that ligation of HLA-DR molecule with anti-HLA-DR antibodies (L243) and/or antigenic peptide/T cell receptor complex resulted in a secretion of several chemokines such as RANTES. In the present study, we aimed to detect putative signal transduction pathway leading to RANTES production from fibroblasts when the DR molecules were ligated with L243. Protein tyrosine kinase inhibitor (GF109203X) suppressed RANTES expression in a dose dependent manner for up to 50% from gingival fibroblasts (GF), while protein kinase C inhibitor (genistein) had no inhibitory effect. Ligation of DR molecules with L243 resulted in tyrosine phosphorylation of 54 kDa cellular protein. Thus, we suspected that either Jun N-terminal kinase-2 (JNK-2) or Src family proteins were involved in HLA-DR-mediated signaling. JNK inhibitor (SP600125), but not Src inhibitor (PP2), suppressed both L243 stimulated RANTES mRNA expression and protein secretion. The maximum inhibition for RANTES production by SP600125 was more than 80%. Additionally, JNK inhibitor nearly completely blocked tumor necrosis factor-alpha (TNF-alpha)-induced RANTES production in GF. Furthermore, ligation of GF HLA-DR with L243 induced selective phosphorylation of JNK-2. We concluded that JNK-2 was one of the HLA-DR-mediated signal transduction pathways.  相似文献   

6.
The airway epithelium is the primary target of inhaled pathogens such as human rhinovirus (HRV). Airway epithelial cells express ICAM-1, the major receptor for HRV. HRV binding to ICAM-1 mediates not only viral entry and replication but also a signaling cascade that leads to enhanced inflammatory mediator production. The specific signaling molecules and pathways activated by HRV-ICAM-1 interactions are not well characterized, although studies in human airway epithelia implicate a role for the p38 MAPK in HRV-induced cytokine production. In the current study, we report that Syk, an important immunoregulatory protein tyrosine kinase, is highly expressed by primary and cultured human airway epithelial cells and is activated in response to infection with HRV16. Biochemical studies revealed that ICAM-1 engagement by HRV and cross-linking Abs enhanced the coassociation of Syk with ICAM-1 and ezrin, a cytoskeletal linker protein. In polarized airway epithelial cells, Syk is diffusely distributed in the cytosol under basal conditions but, following engagement of ICAM-1 by cross-linking Abs, is recruited to the plasma membrane. The enhanced Syk-ICAM-1 association following HRV exposure is accompanied by Syk phosphorylation. ICAM-1 engagement by HRV and cross-linking Abs also induced phosphorylation of p38 in a Syk-dependent manner, and conversely, knockdown of Syk by short interfering (si)RNA substantially diminished p38 activation and IL-8 gene expression. Taken together, these observations identify Syk as an important mediator of the airway epithelial cell inflammatory response by modulating p38 phosphorylation and IL-8 gene expression following ICAM-1 engagement by HRV.  相似文献   

7.
Respiratory syncytial virus (RSV) produces intense pulmonary inflammation, in part, through its ability to induce chemokine synthesis in infected airway epithelial cells. RANTES (regulated upon activation, normal T-cells expressed and secreted) is a CC chemokine which recruits and activates monocytes, lymphocytes, and eosinophils, all cell types present in the lung inflammatory infiltrate induced by RSV infection. In this study we investigated the role of reactive oxygen species in the induction of RANTES gene expression in human type II alveolar epithelial cells (A549), following RSV infection. Our results indicate that RSV infection of airway epithelial cells rapidly induces reactive oxygen species production, prior to RANTES expression, as measured by oxidation of 2',7'-dichlorofluorescein. Pretreatment of airway epithelial cells with the antioxidant butylated hydroxyanisol (BHA), as well a panel of chemically unrelated antioxidants, blocks RSV-induced RANTES gene expression and protein secretion. This effect is mediated through the ability of BHA to inhibit RSV-induced interferon regulatory factor binding to the RANTES promoter interferon-stimulated responsive element, that is absolutely required for inducible RANTES promoter activation. BHA inhibits de novo interferon regulator factor (IRF)-1 and -7 gene expression and protein synthesis, and IRF-3 nuclear translocation. Together, these data indicates that a redox-sensitive pathway is involved in RSV-induced IRF activation, an event necessary for RANTES gene expression.  相似文献   

8.
The protein tyrosine kinase Syk plays an essential role in Fc epsilon RI-mediated histamine release in mast cells by regulating the phosphorylation of other proteins. We investigated the functional role of a putative Syk phosphorylation site, Tyr317. This tyrosine in the linker region of Syk is a possible site for binding by the negative regulator Cbl. Syk with Tyr317 mutated to Phe (Y317F) was expressed in a Syk-negative variant of the RBL-2H3 mast cells. Compared with cells expressing wild-type Syk, expression of the Y317F mutant resulted in an increase in the Fc epsilon RI-mediated tyrosine phosphorylation of phospholipase C-gamma and a dramatic enhancement of histamine release. The in vivo Fc epsilon RI-induced tyrosine phosphorylation of wild-type Syk and that of the Y317F mutant were similar. Although the Fc epsilon RI-induced tyrosine phosphorylation of total cellular proteins was enhanced in the cells expressing the Y317F Syk, the phosphorylation of some other molecules, including the receptor subunits, Vav and mitogen-activated protein kinase, was not increased. The Fc epsilon RI-induced phosphorylation of Cbl was downstream of Syk kinase activity and was unchanged by expression of the Y317F mutation. These data indicate that Tyr317 in the linker region of Syk functions to negatively regulate the signals leading to degranulation.  相似文献   

9.
10.
Thymocyte development proceeds through two critical checkpoints that involve signaling events through two different receptors, the TCR and the pre-TCR. These receptors employ two families of protein tyrosine kinases to propagate their signals, the Src and Syk families. Genetic and biochemical evidence has shown that the Src family kinases are critical for normal T cell maturation. ZAP-70, a Syk family kinase, has similarly been implicated as a critical component in thymocyte development. Although genetic evidence has suggested that Syk is involved during thymocyte development, a definitive study of Syk expression has not been performed. In this paper we report our reanalysis of Syk expression in subpopulations of murine and human thymocytes by intracellular staining and flow cytometry using anti-Syk mAbs. Syk is expressed at increased levels during the stages in which pre-TCR signaling occurs. Furthermore, Syk is down-regulated after the pre-TCR checkpoint has been passed. Syk may play an important role in thymic development during pre-TCR signal transduction. Finally, incomplete down-regulation of Syk expression was noted in human thymocytes, offering a possible explanation for the distinct phenotypes of mice and humans deficient in ZAP-70.  相似文献   

11.
The cytoplasmic tyrosine kinase p72syk (Syk) plays an essential role in signaling via a variety of immune and nonimmune cell receptors. Syk is activated in response to the engagement of the appropriate cell surface receptors and can phosphorylate downstream targets and recruit additional SH2-domain-containing proteins. In order to study the characteristics of Syk in vitro, we have overexpressed untagged, full-length human Syk in a recombinant baculovirus expression system. The enzyme was purified to 95% purity using a novel two-step affinity chromatography process using reactive yellow and phosphotyrosine columns. Yields of 3-10 mg purified Syk were obtained from 1 liter of infected insect cells. Western blotting, internal protein sequencing, and the specific tyrosine phosphorylation of a Syk peptide substrate indicated authenticity of the purified protein. The enzymatic properties of Syk were in good agreement with published data for the human enzyme, as the apparent K(m) of Syk for ATP was 10 microM and the peptide substrate was 3 microM. The recombinant protein also showed similar biochemical characteristics to the native protein isolated from B-cells such as autophosphorylation. Proteolytic cleavage of purified recombinant Syk was used to generate the kinase domain by micro-calpain. We therefore describe an efficient expression system and purification methodology to produce biologically active human Syk.  相似文献   

12.
Cysteinyl leukotrienes (CysLTs) play an important role in eosinophilic airway inflammation. In addition to their direct chemotactic effects on eosinophils, indirect effects have been reported. Eotaxin is a potent eosinophil-specific chemotactic factor produced mainly by fibroblasts. We investigated whether CysLTs augment eosinophilic inflammation via eotaxin production by fibroblasts. Leukotriene (LT)C(4) alone had no effect on eotaxin production by human fetal lung fibroblasts (HFL-1). However, LTC(4) stimulated eotaxin production by IL-13-treated fibroblasts, thereby indirectly inducing eosinophil sequestration. Unstimulated fibroblasts did not respond to LTC(4), but coincubation or preincubation of fibroblasts with IL-13 altered the response to LTC(4). To examine the mechanism(s) involved, the expression of CysLT1R in HFL-1 was investigated by quantitative real-time PCR and flow cytometry. Only low levels of CysLT1R mRNA and no CysLT1R protein were expressed in unstimulated HFL-1. In contrast, stimulation with IL-13 at a concentration of 10 ng/ml for 24 h significantly up-regulated both CysLT1R mRNA and protein expression in HFL-1. The synergistic effect of LTC(4) and IL-13 on eotaxin production was abolished by CysLT1R antagonists pranlukast and montelukast. These findings suggest that IL-13 up-regulates CysLT1R expression, which may contribute to the synergistic effect of LTC(4) and IL-13 on eotaxin production by lung fibroblasts. In the Th2 cytokine-rich milieu, such as that in bronchial asthma, CysLT1R expression on fibroblasts might be up-regulated, thereby allowing CysLTs to act effectively and increase eosinophilic inflammation.  相似文献   

13.
Leukocyte responsiveness to LPS is dependent upon CD14 and receptors of the Toll-like receptor (TLR) family. Neutrophils respond to LPS, but conflicting data exist regarding LPS responses of eosinophils and basophils, and expression of TLRs at the protein level in these granulocyte lineages has not been fully described. We examined the expression of TLR2, TLR4, and CD14 and found that monocytes expressed relatively high levels of cell surface TLR2, TLR4, and CD14, while neutrophils also expressed all three molecules, but at low levels. In contrast, basophils expressed TLR2 and TLR4 but not CD14, while eosinophils expressed none of these proteins. Tested in a range of functional assays including L-selectin shedding, CD11b up-regulation, IL-8 mRNA generation, and cell survival, neutrophils responded to LPS, but eosinophils and basophils did not. In contrast to previous data, we found, using monocyte depletion by negative magnetic selection, that neutrophil responses to LPS were heavily dependent upon the presence of a very low level of monocytes, and neutrophil survival induced by LPS at 22 h was monocyte dependent. We conclude that LPS has little role in the regulation of peripheral blood eosinophil and basophil function, and that, even in neutrophils, monocytes orchestrate many previously observed leukocyte LPS response patterns.  相似文献   

14.
The role of Syk kinase in Fc gamma receptor (Fc gamma R) IIA-mediated phagocytosis was examined with two forms of antisense oligodeoxynucleotides (ODNs) designed to hybridize to human Syk mRNA. Monocytes were incubated with linear and stem-loop antisense ODNs targeted to Syk mRNA. When complexed with cationic liposomes, stem-loop Syk antisense ODN with phosphorothioate modification exhibited stability in fetal bovine and human serum. The stem-loop Syk antisense ODN at a concentration of 0.2 microM inhibited Fc gamma RIIA-mediated phagocytosis by 90% and completely eliminated Syk mRNA and protein in monocytes, whereas scrambled-control ODNs had no effect. The Syk antisense ODNs did not change beta-actin mRNA levels and Fc gamma RII cell-surface expression. In addition, stem-loop Syk antisense ODN inhibited Fc gamma RI and Fc gamma RIIIA-mediated phagocytosis. These data indicate the efficacy of stem-loop Syk antisense ODN for targeting and degrading Syk mRNA and protein and the importance of Syk kinase in Fc gamma receptor-mediated phagocytosis. Immunoblotting assay demonstrated that Fc gamma RII tyrosine phosphorylation after Fc gamma RII cross-linking did not change in the absence of Syk protein. These results indicate that Syk kinase is required for Fc gamma RIIA-mediated phagocytic signaling and that Fc gamma RII cross-linking leads to tyrosine phosphorylation of Fc gamma RII independent of Syk kinase.  相似文献   

15.
RANTES may be one of the chemoattractants involved in stimulating eosinophils and macrophages to migrate selectively into bovine dominant follicles and into developing corpora lutea. We sequenced a 736 bp fragment of the bovine RANTES mRNA encoding the complete protein and defined the ovarian source of RANTES mRNA. As demonstrated by competitive RT-PCR, follicle-derived macrophages showed a 100-1000 times higher RANTES mRNA level compared to unpurified granulosa cells or follicle-derived fibroblasts. By means of in situ hybridization, RANTES mRNA positive macrophages were located in the former thecal layer of the developing corpora lutea.  相似文献   

16.
Tyrosine phosphorylation is an early step in lipopolysaccharide (LPS) stimulated monocytes and macrophages that appears to play a key role in signal transduction. We have demonstrated that LPS purified from Actinobacillus actinomycetemcomitans also increases protein tyrosine phosphorylation in human gingival fibroblasts (HGF). This effect was elicited rapidly after LPS stimulation at concentrations that stimulate anti-bacterial responses in human gingival fibroblasts. Two main proteins, with an apparent molecular weight of 44 and 42 kDa, were phosphorylated after LPS stimulation of the human gingival fibroblasts. The phosphorylation was detected after 5 to 15 min and reached the maximum at 30 min of treatment. The increase in tyrosine phosphorylation was apparent following stimulation with LPS at 10 ng/ml and the response was dose dependent up to 10 microg/ml. Pretreatment with the tyrosine kinase inhibitors, herbimycin A and genistein inhibited the LPS-stimulated phosphorylation of p44 and p42 MAP kinases in a dose dependent manner. Pretreatment of human gingival fibroblasts with antibodies anti-CD14 or anti-TLR-4 but not anti-TLR-2 inhibited the LPS-induced tyrosine phosphorylation of p44 and p42. Additionally, LPS-induced p44 and p42 phosphorylation was inhibited by polymyxin treatment. These findings demonstrate that LPS from A. actinomycetemcomintans increases rapidly p44 and p42 phosphorylation (ERK 1 and ERK 2, respectively) in human gingival fibroblasts. Our data also suggest that CD14 and TLR-4 receptors are involved in the LPS effects in human gingival fibroblasts.  相似文献   

17.
18.
Infectious diseases that cause hemolysis are among the most threatening human diseases, because of severity and/or global distribution. In these conditions, hemeproteins and heme are released, but whether heme affects the inflammatory response to microorganism molecules remains to be characterized. Here, we show that heme increased the lethality and cytokine secretion induced by LPS in vivo and enhanced the secretion of cytokines by macrophages stimulated with various agonists of innate immune receptors. Activation of nuclear factor κB (NF-κB) and MAPKs and the generation of reactive oxygen species were essential to the increase in cytokine production induced by heme plus LPS. This synergistic effect of heme and LPS was blocked by a selective inhibitor of spleen tyrosine kinase (Syk) and was abrogated in dendritic cells deficient in Syk. Moreover, inhibition of Syk and the downstream molecules PKC and PI3K reduced the reactive oxygen species generation by heme. Our results highlight a mechanism by which heme amplifies the secretion of cytokines triggered by microbial molecule activation and indicates possible pathways for therapeutic intervention during hemolytic infectious diseases.  相似文献   

19.
The relationship of expression of the C-C chemokines eotaxin, eotaxin 2, RANTES, monocyte chemoattractant protein-3 (MCP-3), and MCP-4 to the kinetics of infiltrating eosinophils, basophils, and other inflammatory cells was examined in allergen-induced, late-phase allergic reactions in the skin of human atopic subjects. EG2+ eosinophils peaked at 6 h and correlated significantly with eotaxin mRNA and protein, whereas declining eosinophils at 24 h correlated significantly with eotaxin-2 and MCP-4 mRNA. In contrast, no significant correlations were observed between BB1+ basophil infiltrates, which peaked at 24 h, and expression of eotaxin, eotaxin-2, RANTES, MCP-3, and MCP-4 or elastase+ neutrophils (6-h peak), CD3+ and CD4+ T cells (24 h), and CD68+ macrophages (72 h). Furthermore, 83% of eosinophils, 40% of basophils, and 1% of CD3+ cells expressed the eotaxin receptor CCR3, while eotaxin protein was expressed by 43% of macrophages, 81% of endothelial cells, and 6% of T cells (6%). These data suggest that 1) eotaxin has a role in the early 6-h recruitment of eosinophils, while eotaxin-2 and MCP-4 appear to be involved in later 24-h infiltration of these CCR3+ cells; 2) different mechanisms may guide the early vs late eosinophilia; and 3) other chemokines and receptors may be involved in basophil accumulation of allergic tissue reactions in human skin.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号