首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Eight new loci have been assigned to sheep Chromosome (Chr) 1q by use of a chromosomally characterized minipanel of sheep x hamster cell hybrids. Four loci, which have been mapped to the distal region of human Chr 3q, are ceruloplasmin (CP), sucrase isomaltase (SI), glucose transporter 2 (GLUT2), and ectopic viral integration site 1 (EVI1). The other four loci, on human Chr 21, include interferon alpha receptor (IFNAR); interferon inducible protein p78, murine (MX1); collagen type VI, alpha 1 (COL6A1); and S100 protein, beta polypeptide (S100B). All of these loci, except GLUT2 and MX1, have been mapped onto bovine Chr 1 or are syntenic with loci on this chromosome. The in situ localization of transferrin (TF) to sheep Chr 1q42-q45 confirms our previous assignment of this locus and independently anchors the eight new syntenic loci to sheep Chr 1q.  相似文献   

2.
C1q protein of human complement   总被引:21,自引:0,他引:21  
  相似文献   

3.
Watanabe Y  Shibata K  Ikemura T  Maekawa M 《Gene》2008,421(1-2):74-80
Many human genes have been mapped precisely in the genome. These genes vary from a few kb to more than 1 Mb in length. Previously, we measured replication timing along the entire lengths of human chromosomes 11q and 21q at the sequence level. In the present study, we used the newest information for human chromosomes 11q and 21q to analyze the replication timing of 30 extremely large genes (>250 kb) in two human cell lines (THP-1 and Jurkat). The timing of replication differed between the 5'- and 3'-ends of each of extremely large genes on 11q and 21q, and the time interval between their replication varied among genes of different lengths. The large genes analyzed here included several tissue-specific genes associated with neural diseases and genes encoding cell adhesion molecules: some of these genes had different patterns of replication timing between the two cell lines. The amyloid precursor protein gene (APP), which is associated with familial Alzheimer's disease (AD1), showed the largest difference in timing of replication between its 5'- and 3'-ends in relation to gene length of all the large genes studied on 11q and 21q. These extremely large genes were concentrated in and around genomic regions in which replication timing switches from early to late on both 11q and 21q. The differences of replication timing between the 5'- and 3'-terminal regions of large genes may be related to the molecular mechanisms that underlie tissue-specific expression.  相似文献   

4.
We isolated chromosome band-specific human fetal brain cDNAs by the microdissection mediated cDNA capture method, and localized these cDNA using in situ hybridization histochemistry with developing rat brain sections. Uni-Amp cDNAs were prepared from an 18-week old human fetal brain, and hybridized to human metaphase chromosomes. Eight Uni-Amp cDNAs, hybridized to chromosome band 1q25 or 8q24.1, were recovered by microdissection and PCR amplification with Uni-Amp primers. Among these cDNAs, two novel genes (FB113 of 8q24.1 and FB134 of 1q25) showed a temporospatially interesting expression pattern in the developing rat brains. The expression of FB113 was under dynamic regulation in the developing granule cells of cerebellum and dentate gyrus. FB134 showed a nervous tissue specific expression pattern and an exclusively prominent expression in the developing presubiculum and parasubiculum. By the fluorescence in situ hybridization using human genomic DNAs, FB113 and FB134 were mapped back to the human chromosome bands 8q24.1 and 1q25, respectively. These results indicate that combined application of the microdissection mediated cDNA capture method and in situ hybridization histochemistry can be used for the isolation of chromosomal band-specific genes related to brain development or human genetic diseases.  相似文献   

5.
Using (a) somatic cell hybrids retaining partial chromosome 5 and (b) clinical samples from patients with acquired deletions of the long arm of chromosome 5, combined with chromosome 5-linked DNA probes, some of which exhibited RFLPs, we have determined the order of a series of genes on chromosome 5. The order established is 5pter----MLVI-2----cen----HEXB----DHFR----Pi227- --- cp12.6----(IL5,IL4)----IL3----GMCSF---- FGFA---- (CSF1R,PDGFR)----(treC,ADRBR)----(ARH-H9,CSF1 )----qter. The suggested order and orientation for the closely linked IL3/GMCSF gene pair is cen----5' IL3 3'----5' GMCSF 3'----qter, on the basis of analysis of the GMCSF rearrangement in HL60 DNA. The map position of the GRL locus, which was consistent with both somatic cell hybrid and 5q- analyses, was telomeric to GMCSF and centromeric to CSF1R/PDGFR, near FGFA. Long-range restriction-enzyme analysis of 5q- DNAs did not detect rearrangements of 5q-linked probes except in HL60 DNA, but it did reveal putative long-range RFLPs of several loci. RFLPs for GRL, Pi227, cp12.6, IL3, and CSF1R can detect deletions in bone marrow and in leukemia cells from patients with acquired 5q deletions.  相似文献   

6.
The subtelomeric region of human chromosome 4q contains the locus for facioscapulohumeral muscular dystrophy (FSHD). The FSHD mutation is a deletion within an array of 3.3-kb tandem repeats (D4Z4). The disease mechanism is unknown but is postulated to involve position effect. A closely related 3.3-kb array on chromosome 10qter, in contrast, is not associated with a disease phenotype. We show here that the 4q homology on chromosome 10 is not confined to the 3.3-kb repeats but extends both proximally (42 kb) and distally to include the telomere. We have also identified the most distal expressed gene on 10q known so far, mapping only 96 kb from the 3.3-kb repeat array. A 4q variant has also been identified; there is 92%nucleotide identity between the two 4q forms, 4qA and 4qB. The 4qter and 10qter forms show homology to other chromosome ends, including 4p, 21q, and 22q, and these regions may represent a relatively common subtelomeric domain.  相似文献   

7.
A panel of 63 radiation-reduced hybrids has been derived from a mouse cell line containing a neo-marked human Chromosome (Chr) 6, primarily to provide a resource for higher resolution localization of new markers. Hybrids were generated with radiation doses of 40–400 Gy, selected in G418, and were shown by PCR to contain the neo gene. PCR was also used to score the retention of 15 loci that map from 6q13 to q25.2 of the current consensus map plus six other loci assigned to 6q26-q27. An average retention frequency of 27.8% was observed, with the highest frequencies at D6S313 and D6S280 (63.5%) located near the centromere at 6q13, and at D6S283 (68.5%) at 6q16.3-q21, presumably close to the neo integration site. Lowest frequencies (4.8%) were observed for telomeric markers. All markers segregated independently except D6S297 and D6S193. Agreement and some improvement to the current consensus map of 6q was made by mapping 12 loci by the non-parametric statistical method of Falk. In addition, deletion mapping with informative hybrids allowed the ordering of six loci from 6q26 to q27 and permitted some integration of maps of this region.  相似文献   

8.
Comparative genomic hybridization (CGH) was employed to survey genomic regions with increased and decreased copy number of the DNA sequence in 15 endometrial cancers [10 cases with microsatellite instability positive (MI+) and 5 cases with MI–]. Twelve of these 15 tumors (80%) showed abnormalities in copy number at one or more of the chromosomal regions. There were no regions with frequent chromosomal losses. Conversely, 11 of 15 cases (73%) showed gains on chromosome arms 1q (8/15; 53%) and/or 8q (6/15; 40%). Concordant gains of both chromosome arms 1q and 8q were observed in all three endometrial cancers of histological grade 3. These results suggest that these two chromosomal regions may contain genes whose increased expression contributes to development and/or progression of endometrial carcinogenesis. Two cases were further analyzed by fluorescence in situ hybridization (FISH) using three probes on chromosome 1 and two probes on chromosome 8 to more accurately determine increases in copy number. We found gains of chromosome 1q to 2.9–3.6 copies per cell and on 8q to 4.4 copies per cell. Received: 9 March 1997 / Accepted: 2 June 1997  相似文献   

9.
The complex history of distal human chromosome 1q   总被引:1,自引:0,他引:1  
Haig D 《Genomics》2005,86(6):767-770
Human chromosome 1 has been claimed to be a conserved ancestral chromosome of eutherian mammals. However, two small regions from distal 1q (with orthology to mouse chromosome 11) appear to have a different history. These two regions are proposed to have been added to the ancestor of human chromosome 1 as a single block that was subsequently disrupted by a paracentric inversion. The translocation and inversion appear to have occurred at some time after the primate lineage diverged from a common ancestor with rodents. Reconstruction of the history of distal human chromosome 1q is complicated by the "reuse" of breakpoints in different mammalian lineages and by coincidental shared synteny between humans and cats.  相似文献   

10.
Relative phylogenetic divergence of the members of the Pongidae family has been based on genetic evidence. The recent isolation of subtelomeric probes specific for human (HSA) chromosomes 1q, 11p, 13q, and 16q has prompted us to cross hybridize these to the chromosomes of the chimpanzee (Pan troglodytes, PTR), gorilla (Gorilla gorilla, GGO), and orangutan (Pongo pygmaeus, PPY) to search for their equivalent locations in the great apes. Hybridization signals to the 1q subtelomeric DNA sequence probe were observed at the termini of human (HSA) 1q, PTR 1q, GGO 1q, PPY 1q, while the fluorescent signals to the 11p subtelomeric DNA sequence probe were observed at the termini of HSA 11p, PTR 9p, GGO 9p, and PPY 8p. Fluorescent signals to the 13q subtelomeric DNA sequence probe were observed at the termini of HSA 13q, PTR 14q, GGO 14q, and PPY 14q, and positive signals to the 16p subtelomeric DNA sequence probe were observed at the termini of HSA 16q, PTR 18q, GGO 17q, and PPY 19q. These findings apparently suggest sequence homology of these DNA families in the ape chromosomes. Obviously, analogous subtelomeric sequences exist in apes' chromosomes that apparently have been conserved through the course of differentiation of the hominoid species. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
12.
Tuberous sclerosis (TSC) is a dominantly inherited disorder characterized by hamartomas and hamartias in one or more organs, most often in skin, brain, and kidneys. Analysis of the basic genetic defect in tuberous sclerosis would be greatly expedited by definitive determination of the chromosomal location of the TSC gene or genes. We have carried out genetic linkage studies in 15 TSC families, using 34 polymorphic markers including protein markers and DNA markers. Pairwise lod scores were calculated using LIPED, and multipoint analyses were carried out using MENDEL. In the pairwise linkage analysis, using a penetrance value of 90%, a significant positive lod score was obtained with MCT128.1 (D11S144), 11q22-11q23, Zmax 3.26 at theta = 0.08. The tyrosinase probe TYR (11q14-11q22) gave a maximum lod score of 2.88 at theta = 0. In the multipoint analyses the most likely order is (TYR,TSC)-MCT128.1-HHH172. Homogeneity analysis was carried out using the USERM9 subprogram of MENDEL, which conducts the admixture test of C. Smith (1963, Ann. Hum. Genet. 27: 175-182). This test provided no evidence for genetic heterogeneity (that is, non-11-linked families) in this data set.  相似文献   

13.
Cytogenetic deletions are almost always associated with phenotypic abnormality and are very rarely transmitted. We have located a hitherto undescribed, familial deletion involving the region 11q14.3-->q21 in five individuals in a three-generation kindred. Four of the deletion carriers show no phenotypic abnormality; the other, who is the proband, was investigated for short stature and poor academic progress. In view of the apparent innocuous nature of this genetic imbalance, the deletion was investigated in detail to determine its size (3.6 Mb) and location with reference to molecular markers and genetic content. The deleted region is described by a contig of 37 BACS including the flanking regions, which we have assembled. Several possible contributory factors are considered, which might explain the lack of clinical significance of this large deletion. It is notable that there are few genes in this region and none have known functions. All most likely have copies elsewhere in the genome and a number of other hypothetical genes appear to be members of certain gene families, i.e. none is unique. Part of the region (1 Mb) is also duplicated at the pericentromeric region 11p11. Given the very low proportion of the genome occupied by single copy genes and their uneven distribution, regions such as this, which appear to be functionally haplosufficient, may be more common than hitherto recognised.  相似文献   

14.
An anthropoid-specific segmental duplication on human chromosome 1q22   总被引:1,自引:0,他引:1  
Segmental duplications (SDs) play a key role in genome evolution by providing material for gene diversification and creation of variant or novel functions. They also mediate recombinations, resulting in microdeletions, which have occasionally been associated with human genetic diseases. Here, we present a detailed analysis of a large genomic region (about 240 kb), located on human chromosome 1q22, that contains a tandem SD, SD1q22. This duplication occurred about 37 million years ago in a lineage leading to anthropoid primates, after their separation from prosimians but before the Old and New World monkey split. We reconstructed the hypothetical unduplicated ancestral locus and compared it with the extant SD1q22 region. Our data demonstrate that, as a consequence of the duplication, new anthropoid-specific genetic material has evolved in the resulting paralogous segments. We describe the emergence of two new genes, whose new functions could contribute to the speciation of anthropoid primates. Moreover, we provide detailed information regarding structure and evolution of the SD1q22 region that is a prerequisite for future studies of its anthropoid-specific functions and possible linkage to human genetic disorders.  相似文献   

15.
A 260-kb half-YAC clone derived from human chromosome 1q was mapped at high resolution using cosmid subclone fingerprint analysis and was integrated with overlapping clones from the telomeric end of a separately derived 1q44 BAC contig to create a sequence-ready map extending to the molecular telomere of 1q. Analysis of 100 kb of sample sequences from across the 260-kb region encompassed by the half-YAC revealed the presence of EST sequence matches corresponding to 12 separate Unigene clusters and to 12 separate unclustered EST sequences. Low-copy subtelomeric repeats typical of many human telomere regions are present within the distal-most 30 kb of 1q. The previously isolated and radiation hybrid-mapped markers Bda84F03, 1QTEL019, and WI11861 localized at distances approximately 32, 88, and 99 kb, respectively, from the 1q terminus. This sequence-ready map permits high-resolution integration of genetic maps with the DNA sequences directly adjacent to the tip of human chromosome 1q and will enable telomeric closure of the human chromosome 1q DNA reference sequence by connecting the molecular 1q telomere to an internal BAC contig.  相似文献   

16.
A direct interaction of actin with C1q was demonstrated by two in vitro assays using purified human C1q and actins from rabbit skeletal muscle, chicken gizzard muscle and ascaris body wall. Every actin gave rise to a precipitation line with human C1q in agarose gel diffusion. A direct binding of actin with human C1q was ascertained by a binding assay system using radio-labelled rabbit actin and paper discs coated with human C1q. This binding of rabbit actin to C1q was inhibited by addition of unlabelled homologous and heterologous actins in the assay system. Results indicated that such interactions of actins with the human C1q were beyond species specificity.  相似文献   

17.
The CEPH consortium map of chromosome 15q is presented. The map contains 41 loci defined by genotypes generated from CEPH family DNAs with 45 different probe and restriction enzyme combinations contributed by 10 laboratories. A total of 29 loci have been placed on the map with likelihood support of at least 1000:1. The map extends from 15q13 to 15q25-qter. Multipoint linkage analyses provided estimates that the male, female, and sex-averaged maps extend for 127, 190, and 158 cM, respectively. The largest interval is 21 cM and is between D15S37 and D15S74. The on-average locus spacing is 5.6 cM and the mean genetic distance between the 21 uniquely placed loci is 8 cM.  相似文献   

18.
Retinitis pigmentosa (RP) is a heterogeneous group of inherited retinal degeneration. This group of disorders essentially leads to blindness due to mutations in different genes. The genetic basis affected by sporadic and inherited autosomal dominant, autosomal recessive or X-linked mutations is complex. In humans, RP is in most cases associated with missense mutations in the rhodopsin gene (RHO). RHO plays an important role in phototransduction pathways. So far, few studies have described associations between chromosomal alterations and RP. In this study, we present a case report of a premature, 32-week-old male baby who suffered from retinopathy, facial dysmorphisms and other disorders. His chromosomes were analyzed by conventional and high-resolution chromosomal techniques. This analysis revealed structural aberrations on chromosomes 3 and 5 with an apparently balanced chromosomal translocation with karyotype 46,XY,t(3;5)(q25;q11.2). Remarkably, the 3q breakpoint on the long arm of chromosome 3 is located close to the physical RHO chromosomal gene location. In this study, we describe presumably for the first time a possible association between a 3q;5q chromosomal alteration and RP. We conclude that the new detected chromosomal translocation may lead either to loss or inactivation of the intragenic RHO gene or its respective gene regulatory region. As a consequence, the chromosomal aberration may be responsible for retinitis pigmentosa.  相似文献   

19.
20.
A genetic linkage map of human chromosome 9q.   总被引:5,自引:0,他引:5  
A genetic linkage map of human chromosome 9q, spanning a sex-equal distance of 125 cM, has been developed by genotyping 26 loci in the Venezuelan Reference Pedigree. The loci include 12 anonymous microsatellite markers reported by Kwiatkowski et al. (1992), several classical systems previously assigned to chromosome 9q, and polymorphisms for the genes tenacin (HXB), gelsolin (GSN), adenylate kinase 1 (AK1), arginosuccinate synthetase (ASS), ABL oncogene (ABL1), ABO blood group (ABO), and dopamine beta-hydroxylase (DBH). Only a marginally significant sex difference is found along the entire length of the map and results from one interval, between D9S58 and D9S59, that displays an excess of female recombination. A comparison of the genetic map to the existing physical data suggests that there is increased recombination in the 9q34 region with a recombination event occurring every 125-400 kb. This map should be useful in further characterizing the relationship between physical distance and genetic distance, as well as for genetic linkage studies of diseases that map to chromosome 9q, including multiple self-healing squamous epithelioma (MSSE), Gorlin syndrome (NBCCS), xeroderma pigmentosum (XPA), nail-patella syndrome (NPS1), torsion dystonia (DYT1), and tuberous sclerosis (TSC1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号