首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple and practical procedure for the synthesis of P1,P4-di(adenosine 5'-) tetraphosphate from ATP by the catalysis of leucyl-tRNA synthetase from Bacillus stearothermophilus is described. Km for leucine was 6.7 microM and for ATP was 3.3 mM. The reaction yielded not only diadenosine tetraphosphate, but various byproducts such as P1,P3-(diadenosine 5'-) triphosphate, ADP and AMP. By coupling the reaction with an ATP regeneration system by acetate kinase and adenylate kinase with acetylphosphate as a phosphate donor, diadenosine tetraphosphate was prepared as a sole product at a high yield (96%).  相似文献   

2.
Several approaches to reduce acetate accumulation in Escherichia coli cultures have recently been reported. This reduction subsequently led to a significant enhancement in recombinant protein production. In those studies, metabolically engineered E. coli strains with reduced acetate synthesis rates were constructed through the modification of glucose uptake rate, the elimination of critical enzymes that are involved in the acetate formation pathways, and the redirection of carbon flux toward less inhibitory byproducts. In particular, it has been shown that strains carrying the Bacillus subtilis acetolactate synthase (ALS) gene not only produce less acetate but also have a higher ATP yield. Metabolic flux analysis of carbon flux distribution of the central metabolic pathways and at the pyruvate branch point revealed that this strain has the ability to channel excess pyruvate to the much less toxic compound, acetoin. The main focus of this study is the systematic analysis of the effects of small perturbations in the host's existing pathways on the redistribution of carbon fluxes. Specifically, a mutant with deleted acetate kinase (ACK) and acetyl phosphotransferase (PTA) was constructed and studied. Results from the metabolic analysis of carbon redistribution show the ackA-pta mutation will reduce acetate level at the expense of the growth rate. In addition, in the ackA-pta deficient strain a much higher lactate formation rate with simultaneously lower formate and ethanol synthesis rates was found. Expression of the B. subtilis ALS in ackA-pta mutants further reduces acetate levels while cell density similar to that of the parent strain is attained.  相似文献   

3.
A spontaneously occurring thiostrepton-resistant mutant of Bacillus megaterium has been shown to yield ribosomes lacking protein BM-L11, a protein immunologically related to Escherichia coli ribosomal protein L11. Here we have demonstrated that the mutant strain has acquired the relaxed phenotype and is unable to synthesise guanosine tetraphosphate and pentaphosphate in vivo. Ribosomes from the mutant strain are unable to support the synthesis of these two compounds in vitro, but this deficiency can be overcome by re-addition of purified protein BM-L11 to the ribosomes. Thus protein BM-L11 appears to be indispensable for the synthesis of guanosine tetraphosphate and pentaphosphate; the implications of this observation are discussed.  相似文献   

4.
The nucleotide diadenosine tetraphosphate has been suggested to function as a signal molecule for the initiation of DNA replication. Previous studies have indicated that diadenosine tetraphosphate is synthesized by certain aminoacyl tRNA synthetases and that diversion of AMP from the amino acid-enzyme complex to ATP to form diadenosine tetraphosphate is facilitated by zinc ions. The growth retardation of zinc-deficient rats is associated with specific reduction in DNA replication and also with a potentially growth-limiting decrease in food intake. The possibility has been investigated that in zinc-deficient rats, lack of Zn(2+) restricts diadenosine tetraphosphate synthesis, resulting in a failure to synthesize DNA and in a reduction in growth. The results indicate that the depressed growth potential caused by the reduction in food intake associated with the deficiency was sufficient to lower diadenosine tetraphosphate concentrations significantly in the liver and spleen. However, there was no indication of a specific effect of zinc deficiency on diadenosine tetraphosphate values.  相似文献   

5.
The relA gene product, ATP: GTP 3'-pyrophosphotransferase (stringent factor) has been isolated in homogeneous form from an Escherichia coli strain polyploid for this gene at a yield of 1 mg/100 g cells and at a specific activity in a ribosome-activated assay at 37 degrees C of 120 mumol guanosine pentaphosphate formed min-1 mg protein-1. The specific activity in a methanol-activated assay at 25 degrees C was found to be 4 mumol guanosine pentaphosphate formed min-1 mg protein-1. These values are about 100 times higher than reported by others. Our further studies of this enzyme led to the following results. Antibodies raised against this enzyme inhibit the ribosome-activated synthesis of guanosine tetraphosphate and pentaphosphate but have no effect on the much slower synthesis, detected in the absence of ribosomes. The amount of stringent factor in the relA+ strain CP78 is estimated to about 1 copy per 200 ribosomes. The amount of antibody-binding material in CP79 (relA) is at least 5 times lower.  相似文献   

6.
Cultures of Myxococcus xanthus develop multicellular fruiting bodies when starved for carbon and nitrogen sources on an agar surface. Under these conditions of severe starvation, cultures rapidly accumulated a compound identified as guanosine tetraphosphate by chromatographic migration of the compound and of its major acid and alkali breakdown products. The accumulation of guanosine tetraphosphate was reduced in the presence of tetracycline, indicating that it may be synthesized by mechanisms similar to those of Escherichia coli. The guanosine tetraphosphate level was also reduced in starved cultures of a mutant unable to fruit normally, although it has been determined whether the defect in guanosine tetraphosphate accumulation is responsible for the inability to fruit. Induction of spores by glycerol addition led to transient increases in both guanosine tetraphosphate and guanosine pentaphosphate at a stage following most cell shortening, but before spores had acquired full refractility.  相似文献   

7.
Relaxed mutants of Escherichia coli RNA polymerase   总被引:9,自引:0,他引:9  
V Nene  R E Glass 《FEBS letters》1983,153(2):307-310
When Escherichia coli cells are treated with either polymixin or gramicidin at concentrations that block protein and RNA synthesis, they accumulate a significant amount of guanosine tetraphosphate ppGpp. Such accumulation occurs in stringent (relA+) as well as in relaxed (relA) strains and no guanosine pentaphosphate pppGpp is then detected within the cells. These observations suggest that polypeptide antibiotics elicit ppGpp formation through a mechanism different from the stringent control system triggered by amino acid starvation of bacteria. Experiments based on tetracycline action indicate, moreover, that the accumulation of ppGpp under polymixin or gramicidin treatment is connected with a strong restriction of the degradation rate of this nucleotide.  相似文献   

8.
9.
Abstract We have proposed that guanosine tetraphosphate produced in Escherichia coli cells subjected to an isoleucine limitation inhibits pBR322 DNA replication [1]. In E. coli relA which cannot synthesize guanosine tetraphosphate (ppGpp) upon amino acid limitation pBR322 DNA is amplified after arginine starvation. The yield of plasmid DNA amplified either by chloramphenicol (Cm) or by arginine limitation is compared. The plasmid yield per cell is equal in amino acid-starved cells and in cells treated with Cm. To increase the plasmid content per ml of cell suspension the growth medium was supplemented with increasing amounts of nutrients. Plasmid DNA can be isolated in large quantities by this procedure. This simple method can be used for the enrichment of pBR325 DNA which cannot be amplified by Cm treatment. Our results indicate that E. coli relA strains might be suitable hosts for the amplification of pBR322 and related plasmids in E. coli .  相似文献   

10.
Cell extracts of a nonsporeforming strictly anaerobic bacterium, Acetobacterium woodii produced acetate in N-tris(Hydroxymethyl)methyl-2-aminoethane sulfonic acid or phosphate buffers from hydrogen and carbon dioxide. The formation of acetate was not dependent on the presence of ATP in the reaction mixture; ADP also did not influence the acetate production. Since acetic acid is the main fermentation product during growth of A. woodii with H2 and CO2, ATP must be synthesized in the course of acetate formation. The possible sites of ATP synthesis are discussed.  相似文献   

11.
A mutant of Methanosarcina barkeri (Fusaro) is able to grow on pyruvate as the sole carbon and energy source. During growth, pyruvate is converted to CH4 and CO2, and about 1.5 mol of ATP per mol of CH4 is formed (A.-K. Bock, A. Prieger-Kraft, and P. Schönheit, Arch. Microbiol. 161:33-46, 1994). The pyruvate-utilizing mutant of M. barkeri could also grow on pyruvate when methanogenesis was completely inhibited by bromoethanesulfonate (BES). The mutant grew on pyruvate (80 mM) in the presence of 2 mM BES with a doubling time of about 30 h up to cell densities of about 400 mg (dry weight) of cells per liter. During growth on pyruvate, the major fermentation products were acetate and CO2 (about 0.9 mol each per mol of pyruvate). Small amounts of acetoin, acetolactate, alanine, leucine, isoleucine, and valine were also detected. CH4 was not formed. The molar growth yield (Yacetate) was about 9 g of cells (dry weight) per mol of acetate, indicating an ATP yield of about 1 mol/mol of acetate formed. Growth on pyruvate in the presence of BES was limited; after six to eight generations, the doubling times increased and the final cell densities decreased. After 9 to 11 generations, growth stopped completely. In the presence of BES, suspensions of pyruvate-grown cells fermented pyruvate to acetate, CO2, and H2. CH4 was not formed. Conversion of pyruvate to acetate, in the complete absence of methanogenesis, was coupled to ATP synthesis. Dicyclohexylcarbodiimide, an inhibitor of H(+)-translocating ATP synthase, did not inhibit ATP formation. In the presence of dicyclohexylcarbodiimide, stoichiometries of up to 0.9 mol of ATP per mol of acetate were observed. The uncoupler arsenate completely inhibited ATP synthesis, while the rates of acetate, CO2, and H2 formation were stimulated up to fourfold. Cell extracts of M. barkeri grown on pyruvate under nonmethenogenic conditions contained pyruvate: ferredoxin oxidoreductase (0.5 U/mg), phosphate acetyltransferase (12 U/mg), and acetate kinase (12 U/mg). From these data it is concluded that ATP was synthesized by substrate level phosphorylation during growth of the M. barkeri mutant on pyruvate in the absence of methanogenesis. This is the first report of growth of a methanogen under nonmethanogenic conditions at the expense of a fermentative energy metabolism.  相似文献   

12.
G N Bennett  G R Gough  P T Gilham 《Biochemistry》1976,15(21):4623-4628
A new procedure for the synthesis of the pyrophosphate bond has been employed in the preparation of nucleoside dipyrophosphates from nucleoside 3',5'-diphosphates. The method makes use of a powerful phosphorylating agent generated in a mixture of cyanoethyl phosphate, dicyclohexylcarbodiimide, and mesitylenesulfonyl chloride in order to avoid possible intramolecular reactions between the two phosphate groups on the sugar ring. That such reactions can readily occur was shown by the facile cyclization of deoxyguanosine 3',5'-diphosphate to P1,P2-deoxyguanosine 3',5'-cyclic pyrophosphate in the presence of dicyclohexylcarbodiimide alone. The phosphorylation reagent was initially tested in the conversion of deoxyguanosine 3',5'-diphosphate to the corresponding 3',5'-dipyrophosphate and was then used to phosphorylate 2'-O-(alpha-methoxyethyl)guanosine 3',5'-diphosphate, which had been prepared from 2'-O-(alpha-methoxyethyl)guanosine. In the latter case, the addition of the two beta phosphate groups was accomplished in 40% yield. Removal of the methoxyethyl group from the phosphorylated product gave guanosine 3',5'-dipyrophosphate, which was shown to be identical with guanosine tetraphosphate prepared enzymatically from a mixture of GDP and ATP. A modification of published procedures was also necessary to effect the synthesis of guanosine bis(methylenediphosphonate). Guanosine was treated with methylenediphosphonic acid and dicyclohexylcarbodiimide in the absence of added base. The product consisted of a mixture of guanosine 2',5' - and 3',5'-bis(methylenediphosphonate), which was resolved by anion-exchange chromatography. The 2',5' and 3',5' isomers are interconvertible at low pH, with the ultimate formation of an equilibrium mixture having a composition ratio of 2:3. The predominant constituent of this mixture has been unequivocally identified as the 3',5' isomer by synthesis from 2'-O-tetrahydropyranylguanosine.  相似文献   

13.
The photosynthetic green sulfur bacterium Chlorobaculum tepidum assimilates CO(2) and organic carbon sources (acetate or pyruvate) during mixotrophic growth conditions through a unique carbon and energy metabolism. Using a (13)C-labeling approach, this study examined biosynthetic pathways and flux distributions in the central metabolism of C. tepidum. The isotopomer patterns of proteinogenic amino acids revealed an alternate pathway for isoleucine synthesis (via citramalate synthase, CimA, CT0612). A (13)C-assisted flux analysis indicated that carbons in biomass were mostly derived from CO(2) fixation via three key routes: the reductive tricarboxylic acid (RTCA) cycle, the pyruvate synthesis pathway via pyruvate:ferredoxin oxidoreductase, and the CO(2)-anaplerotic pathway via phosphoenolpyruvate carboxylase. During mixotrophic growth with acetate or pyruvate as carbon sources, acetyl-CoA was mainly produced from acetate (via acetyl-CoA synthetase) or citrate (via ATP citrate lyase). Pyruvate:ferredoxin oxidoreductase converted acetyl-CoA and CO(2) to pyruvate, and this growth-rate control reaction is driven by reduced ferredoxin generated during phototrophic growth. Most reactions in the RTCA cycle were reversible. The relative fluxes through the RTCA cycle were 80~100 units for mixotrophic cultures grown on acetate and 200~230 units for cultures grown on pyruvate. Under the same light conditions, the flux results suggested a trade-off between energy-demanding CO(2) fixation and biomass growth rate; C. tepidum fixed more CO(2) and had a higher biomass yield (Y(X/S), mole carbon in biomass/mole substrate) in pyruvate culture (Y(X/S) = 9.2) than in acetate culture (Y(X/S) = 6.4), but the biomass growth rate was slower in pyruvate culture than in acetate culture.  相似文献   

14.
Anaplerotic enzyme reactions are those which replenish tricarboxylic acid intermediates that are withdrawn for the synthesis of biomass. In this study, we examined recombinant protein production in Escherichia coli containing activity in an additional anaplerotic enzyme, pyruvate carboxylase. In batch fermentations, the presence of pyruvate carboxylase resulted in 68% greater production of the model protein, beta-galactosidase, 41% greater cell yield, and 57% lower acetate concentration. We discuss why these results indicate that acetate concentration does not limit cell growth and protein synthesis, as predicted by other researchers, and suggest instead that the rate of acetate formation represents an inefficient consumption of glucose carbon, which is reduced by the presence of pyruvate carboxylase.  相似文献   

15.
We cloned and sequenced an operon of nine genes coding for the subunits of the Bacillus subtilis F0F1 ATP synthase. The arrangement of these genes in the operon is identical to that of the atp operon from Escherichia coli and from three other Bacillus species. The deduced amino acid sequences of the nine subunits are very similar to their counterparts from other organisms. We constructed two B. subtilis strains from which different parts of the atp operon were deleted. These B. subtilis atp mutants were unable to grow with succinate as the sole carbon and energy source. ATP was synthesized in these strains only by substrate-level phosphorylation. The two mutants had a decreased growth yield (43 and 56% of the wild-type level) and a decreased growth rate (61 and 66% of the wild-type level), correlating with a twofold decrease of the intracellular ATP/ADP ratio. In the absence of oxidative phosphorylation, B. subtilis increased ATP synthesis through substrate-level phosphorylation, as shown by the twofold increase of by-product formation (mainly acetate). The increased turnover of glycolysis in the mutant strain presumably led to increased synthesis of NADH, which would account for the observed stimulation of the respiration rate associated with an increase in the expression of genes coding for respiratory enzymes. It therefore appears that B. subtilis and E. coli respond in similar ways to the absence of oxidative phosphorylation.  相似文献   

16.
The relationships among the rate of RNA synthesis, RNA polymerase synthesis and activity, and guanosine tetraphosphate levels were investigated following nutritional shift-up in Escherichia coli. RNA synthesis continues at the preshift rate for 1.5 min after which an increase is observed that reaches a new steady-state rate at between 2 and 2.5 min. RNA polymerase activity measured in crude extracts increases immediately and by 10 min has increased 50%. RNA polymerase synthesis as measured by the synthesis of the β and β′ subunits lags for 2.5 min and then increases 75% by 10 min. Guanosine tetraphosphate levels decrease 50% by 3 min to levels characteristic of steady-state post-shift-up cells. The significance of these data to the regulation of RNA synthesis during shift-up is discussed.  相似文献   

17.
18.
Anaplerotic enzyme reactions are those which replenish tricarboxylic acid intermediates that are withdrawn for the synthesis of biomass. In this study, we examined recombinant protein production in Escherichia coli containing activity in an additional anaplerotic enzyme, pyruvate carboxylase. In batch fermentations, the presence of pyruvate carboxylase resulted in 68% greater production of the model protein, β-galactosidase, 41% greater cell yield, and 57% lower acetate concentration. We discuss why these results indicate that acetate concentration does not limit cell growth and protein synthesis, as predicted by other researchers, and suggest instead that the rate of acetate formation represents an inefficient consumption of glucose carbon, which is reduced by the presence of pyruvate carboxylase.  相似文献   

19.
Weak stringent or relaxed responses were induced in Escherichia coli (relA+), using mild amino acid starvation or treatment with chloramphenicol at low concentrations, respectively, such that the growth rate was barely reduced. In this manner, the intracellular concentration of the nucleotide guanosine tetraphosphate, ppGpp, could be varied in any desired range between 0 and 1000 pmol of ppGpp per OD460 unit of culture mass. At the same time, the rate of synthesis of stable RNA (rs; rRNA and tRNA) was measured, relative to the total instantaneous rate of RNA synthesis (rt). The correlation between the cytoplasmic concentration of ppGpp and stable RNA gene activity (rs/rt) was the same as that observed previously with relA+ and relA strains growing exponentially at different rates in different media. This suggests that the distinction between growth control and stringent control of stable RNA synthesis is arbitrary, and that both kinds of control reflect the same ppGpp-dependent phenomenon. By increasing the stable RNA gene dosage, using high copy number plasmids carrying an rrn gene, we have tested the idea that ppGpp partitions the bacterial RNA polymerase into two forms with different probabilities to initiate at stable RNA and mRNA promoters. The relaxed response was not significantly altered, but the extent of the stringent response was reduced by the presence of extra rrn genes. The results agree with quantitative predictions derived from the RNA polymerase partitioning hypothesis.  相似文献   

20.
A procedure has been outlined for the synthesis of ribonucleoside 3'-di- and -triphosphates. The synthetic scheme involves the conversion of a ribonucleoside 3'-monophosphate to its 2'-(5'-di)-O-(1-methoxyethyl) derivative, followed by successive treatments of the blocked ribonucleotide with 1,1'-carbonyldiimidazole and mono(tri-n-butylammonium) phosphate or pyrophosphate. The resulting ribonucleoside 3'-di- and -triphosphate derivatives are then deblocked by treatment with dilute aqueous acetic acid, pH 3.0. The use of this procedure is illustrated for adenosine 3'-monophosphate, which has been converted to its corresponding 3'-di- and -triphosphates in 61% overall yield. The decomposition of adenosine 3'-di- and -triphosphates to adenosine 2'-monophosphate, adenosine 3'-monophosphate, and adenosine cyclic 2',3'-monophosphate as a function of pH at 100 degrees has been studied as has the attempted polymerization of adenosine 3'-diphosphate with polynucleotide phosphorylase. Also prepared was guanosine 5'-diphosphate 3'-diphosphate (guanosine tetraphosphate; ppGpp), which was accessible via treatment of 2'-O-(1-methoxyethyl)guanosine 5'-monophosphate 3'-monophosphate with the phosphorimidazolidate of mono(tri-n-butyl ammonium) phosphate. The resulting blocked tetraphosphate was deblocked in dilute aqueous acetic acid to afford ppGpp in an overall yield of 18%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号