首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The bovine immunodeficiency virus (BIV) gag gene encodes a 53-kDa precursor (Pr53gag) that is involved in virus particle assembly and is further processed into the putative matrix (MA), capsid (CA), and nucleocapsid (NC) functional domains in the mature virus. Gag determinants are also found in the Gag-Pol polyprotein precursor. To immunologically identify the major precursors and processed products of the BIV gag gene, monospecific rabbit sera to recombinant BIV MA protein and Pr53gag and peptides predicted to correspond to the CA and NC proteins and the MA-CA cleavage site were developed and used in immunoprecipitations and immunoblots of BIV antigens. Monospecific antisera to native and recombinant human immunodeficiency virus type 1 proteins were also used to identify analogous BIV Gag proteins and to determine whether cross-reactive epitopes were present in the BIV Gag precursors or processed products. The BIV MA, CA, and NC Gag proteins were identified as p16, p26, and p13, respectively. In addition to BIV Pr53gag, the major Gag precursor, two other Gag-related precursors of 170 and 49 kDa were identified that have been designated pPr170gag-pol and Pr49gag, respectively; pPr170gag-pol is the Gag-Pol polyprotein precursor, and Pr49gag is the transframe Gag precursor present in pPr170gag-pol. Several alternative Gag cleavage products were also observed, including p23, which contains CA and NC determinants, and p10, which contains a peptide sequence conserved in the CA proteins of most lentiviruses. The monospecific antisera to human immunodeficiency virus type 1 CA (p24) and NC (p7) proteins showed cross-reactivity to and aided in the identification of analogous BIV proteins. Based on the present data, a scheme for the processing of BIV Gag precursors is proposed.  相似文献   

2.
Differentiated human teratocarcinoma cell lines produce the human teratocarcinoma-derived virus (HTDV) particles encoded by the human endogenous retrovirus sequence HERV-K. We screened almost 2,000 human sera for antibodies against this endogenous human retrovirus, HTDV/HERV-K. Specificity of the immunofluorescence reactions using particle producing teratocarcinoma cells was confirmed by immunoelectron microscopy of ultrathin frozen sections. Immunoblot analyses using lysates of HTDV-producing cells revealed a 80-kDa HERV-K Gag precursor and a 90-kDa putative viral Env protein after incubation with positive sera. No processed Gag protein could be observed. Virus-specific bands were not detected in lysates of nonproducing cells. High antibody titers were found in about 60% of male patients with germ cell tumors. Antibody reactivity declined after tumor removal. In healthy blood donors, anti-HTDV reactivity was found only at low titers in a small percentage (3.9%) of individuals. A slightly elevated but statistically significant percentage of HTDV positivity was also observed for sera of pregnant women, whereas human immunodeficiency virus-positive individuals exhibited no peculiarity compared to normal blood donors. Our results provide evidence that HTDV particles are expressed in vivo and that the immune reaction against HTDV/HERV-K is specific for defined viral proteins.  相似文献   

3.
A full-length and C-terminally truncated version of human endogenous retrovirus (HERV)-K10 protease were expressed in Escherichia coli and purified to homogeneity. Both versions of the protease efficiently processed HERV-K10 Gag polyprotein substrate. HERV-K10 Gag was also cleaved by human immunodeficiency virus, type 1 (HIV-1) protease, although at different sites. To identify compounds that could inhibit protein processing dependent on the HERV-K10 protease, a series of cyclic ureas that had previously been shown to inhibit HIV-1 protease was tested. Several symmetric bisamides acted as very potent inhibitors of both the truncated and full-length form of HERV-K10 protease, in subnanomolar or nanomolar range, respectively. One of the cyclic ureas, SD146, can inhibit the processing of in vitro translated HERV-K10 Gag polyprotein substrate by HERV-K10 protease. In addition, in virus-like particles isolated from the teratocarcinoma cell line NCCIT, there is significant accumulation of Gag and Gag-Pol precursors upon treatment with SD146, suggesting the compound efficiently blocks HERV-K Gag processing in cells. This is the first report of an inhibitor able to block cell-associated processing of Gag polypeptides of an endogenous retrovirus.  相似文献   

4.

Background

Viral genomes of the human endogenous retrovirus K (HERV-K) family are integrated into the human chromosome and are transmitted vertically as Mendelian genes. Although viral particles are released by some transformed cells, they have never been shown to be infectious. In general, gammaretroviruses are produced as immature viral particles by accumulation of the Gag polyproteins at the plasma membrane, which subsequently bud from the cell surface. After release from the cell, Gag is further processed by proteolytic cleavage by the viral protease (PR), which results in morphologically mature particles with condensed cores. The HERV-K Gag polyprotein processing and function has not yet been precisely determined.

Results

We generated a recombinant poxvirus, encoding the human endogenous retrovirus K consensus gag-pro-pol genes (MVA-HERV-Kcon) and obtained high levels of HERV-K Gag expression. The resulting retroviral particle assembled at the plasma membrane, as is typical for gammaretroviruses; and immature as well as mature retrovirus-like particles (VLPs) were observed around the infected cells. VLPs were purified, concentrated and separated by two-dimensional gel electrophoresis. The HERV-K Gag fragments were identified by mass spectroscopy and N-terminal sequencing which revealed that HERV-K Gag is processed into MA, a short spacer peptide, p15, CA and NC.

Conclusion

The cleavage sites of HERV-K Gag were mapped and found to be highly conserved among HERV-K genomes. The consensus HERV-K gag gene used in this study is known to support viral, infectivity [1], and thus the cleavage sites that were mapped in this study for all the Gag components are relevant for HERV-K infectivity.  相似文献   

5.
Cleavage of the Gag and Gag-Pol polyprotein precursors is a critical step in proliferation of retroviruses and retroelements. The Ty1 retroelement of Saccharomyces cerevisiae forms virus-like particles (VLPs) made of the Gag protein. Ty1 Gag is not obviously homologous to the Gag proteins of retroviruses. The apparent molecular mass of Gag is reduced from 58 to 54 kDa during particle maturation. Antibodies raised against the C-terminal peptide of Gag react with the 58-kDa polypeptide but not with the 54-kDa one, indicating that Gag is proteolytically processed at the C terminus. A protease cleavage site between positions 401 and 402 of the Gag precursor was defined by carboxy-terminal sequencing of the processed form of Gag. Certain deletion and substitution mutations in the C terminus of the Gag precursor result in particles that are two-thirds the diameter of the wild-type VLPs. While the Ty1 protease is active in these mutants, their transposition rates are decreased 20-fold compared with that of wild-type Ty1. Thus, the Gag C-terminal portion, released in the course of particle maturation, probably plays a significant role in VLP morphogenesis and Ty1 transposition.  相似文献   

6.
Productive, spreading infection of peripheral blood lymphocytes (PBL) with human immunodeficiency virus type 1 (HIV-1) requires the viral protein Vif. To study the requirement for vif in this system, we infected PBL with a phenotypically complemented HIV-1 clone mutated in vif. Progeny virus was produced which was noninfectious in PBL but replicated in SupT1 cells. Analysis of metabolically labeled proteins of sedimentable extracellular particles made in PBL by radioimmunoprecipitation with either serum from a patient with AIDS or a monoclonal antibody reactive with HIV-1 Gag proteins revealed that vif-negative but not wild-type particles carry higher levels of p55, p41, and p38 Gag-specific proteins compared with those of p24. Similar results were obtained with sucrose-purified virions. Our data indicate that vif plays a role in Gag protein processing or in incorporation of processed Gag products into mature virions. The presence of unprocessed precursor Gag polyprotein (Pr55gag) and other Gag processing intermediates in PBL-derived vif-negative extracellular particles may contribute to the reduced infectivity of this virus.  相似文献   

7.
Foamy viruses (FVs) express the Gag protein as a precursor with a molecular mass of 74 kDa (pr74) from which a 70-kDa protein (p70) is cleaved by the viral protease. To gain a better understanding of FV Gag protein processing and function, we have generated and analyzed mutants in the C-terminal gag region of an infectious molecular clone. Our results show that p70 is an N-terminal cleavage product of pr74. However, we were unable to identify a p4 molecule. A virus mutant expressing p70 only was found to be replication competent, albeit at very low titers compared to those of wild-type virus. A strong tendency to synthesize and cleave a pr74 molecule was deduced from the occurrence of revertants upon transfection of this mutant. Substitution of the p6gag domain of human immunodeficiency virus type 1 for the p4 domain of FV resulted in a stable chimeric virus which replicated to titers 10 times lower than those of wild-type virus. FV Gag protein was found to be phosphorylated at serine residues. Mutagenesis of serines conserved in the p4 domain had no influence on viral replication in cell culture. The p70/p74 Gag cleavage was found to be required for viral infectivity, since mutagenesis of the putative cleavage site led to replication-incompetent virus. Interestingly, the cleavage site mutants were defective in the intracellular cDNA synthesis of virion DNA, which indicates that correct FV particle formation and the generation of virion DNA are functionally linked.  相似文献   

8.
The human immunodeficiency virus type 1 gag gene product Pr55gag self-assembles when expressed on its own in a variety of eukaryotic systems. Assembly in T lymphocytes has not previously been studied, nor is it clear whether Pr55gag particles can package genomic RNA or if the Gag-Pol polyprotein is required. We have used a series of constructs that express Gag or Gag-Pol proteins with or without the viral protease in transient transfections in COS-1 cells and also expressed stably in CD4+ T cells to study this. Deletion of the p6 domain at the C terminus of protease-negative Pr55gag did not abolish particle release, while truncation of the nucleocapsid protein reduced it significantly, particularly in lymphocytes. Gag-Pol polyprotein was released from T cells in the absence of Pr55gag but did not encapsidate RNA. Pr55gag encapsidated human immunodeficiency virus type 1 RNA whether expressed in a protease-positive or protease-negative context. p6 was dispensable for RNA encapsidation. Marked differences in the level of RNA export were noted between the different cell lines.  相似文献   

9.
The vpr gene of human immunodeficiency virus type 1 (HIV-1) encodes a virion-associated regulatory protein. Mutagenesis has shown that the virion association of Vpr requires sequences near the C terminus of the HIV-1 Gag polyprotein Pr55gag. To investigate whether Vpr incorporation is mediated by a specific domain of Pr55gag, we examined the ability of chimeric HIV-1/Moloney murine leukemia virus (MLV) Gag polyproteins to direct the incorporation of Vpr. Vpr expressed in trans did not associate with particles formed by the authentic MLV Gag polyprotein or with particles formed by chimeric Gag polyproteins that had the matrix (MA) or capsid (CA) domain of MLV precisely replaced by the corresponding domain of HIV-1HXB2. By contrast, Vpr was efficiently incorporated upon replacement of the C-terminal nucleocapsid (NC) domain of the MLV Gag polyprotein with HIV-1 p15 sequences. Vpr was also efficiently incorporated into particles formed by a MLV Gag polyprotein that had the HIV-1 p6 domain fused to its C terminus. Furthermore, a deletion analysis revealed that a conserved region near the C terminus of the p6 domain is essential for Vpr incorporation, whereas sequences downstream of the conserved region are dispensable. These results show that a virion association motif for Vpr is located within residues 1 to 46 of p6.  相似文献   

10.
11.
Bovine immunodeficiency virus Gag proteins were purified from virions, and their amino acid sequences and molecular masses were determined. The matrix, capsid, and nucleocapsid (MA, CA, and NC, respectively) and three smaller proteins (p2L, p3, and p2) were found to have molecular masses of 14.6, 24.6, and 7.3 and 2.5, 2.7, and 1.9 kDa, respectively. The order of these six proteins in the Gag precursor, Pr53gag, is NH2-MA-p2L-CA-p3-NC-p2-COOH. In contrast to other retroviral MA proteins, the bovine immunodeficiency virus MA retains its N-terminal methionine and is not modified by fatty acids. In addition, the bovine immunodeficiency virus NC migrates as a 13-kDa protein in denaturing gel electrophoresis; however, its molecular mass was determined to be 7.3 kDa.  相似文献   

12.
The replicase open reading frame lb (ORF1b) protein of equine arteritis virus (EAV) is expressed from the viral genome as an ORF1ab fusion protein (345 kDa) by ribosomal frameshifting. Processing of the ORF1b polyprotein was predicted to be mediated by the nsp4 serine protease, the main EAV protease. Several putative cleavage sites for this protease were detected in the ORF1b polyprotein. On the basis of this tentative processing scheme, peptides were selected to raise rabbit antisera that were used to study the processing of the EAV replicase ORF1b polyprotein (158 kDa). In immunoprecipitation and immunoblotting experiments, processing products of 80, 50, 26, and 12 kDa were detected. Of these, the 80-kDa and the 50-kDa proteins contain the putative viral polymerase and helicase domains, respectively. Together, the four cleavage products probably cover the entire ORF1b-encoded region of the EAV replicase, thereby representing the first complete processing scheme of a coronaviruslike ORF1b polyprotein. Pulse-chase analysis revealed that processing of the ORF1b polyprotein is slow and that several large precursor proteins containing both ORF1a- and ORF1b-encoded regions are generated. The localization of ORF1b-specific proteins in the infected cell was studied by immunofluorescence. A perinuclear staining was observed, which suggests association with a membranous compartment.  相似文献   

13.
To obtain a better understanding of the role of the gag gene-encoded matrix (MA) protein in the assembly and maturation of type D retroviruses, we have made five mutants with specific in-frame deletions within the p10-coding region by the use of oligonucleotide-directed mutagenesis. The changes in the Gag polyprotein made by these mutations resulted in almost identical phenotypes. In cells expressing mutant genomes, the mutant Gag polyproteins were synthesized and modified with myristic acid in a normal manner. However, they were so unstable that the bulk of the newly synthesized polyproteins was degraded within 1 h without being processed into mature structural polypeptides. In contrast, wild-type polyproteins have a processing half-life of 3.0 to 3.5 h. The mutant Gag polyproteins were assembled with very low efficiency into capsids in the cytoplasm of the mutant-infected cells. Moreover, the few capsids that formed were neither released from nor accumulated in the cells. These results suggest that the matrix protein plays an important role in guiding the correct folding of the Gag polyprotein, which is presumably crucial for both stabilizing the molecule and facilitating the intermolecular interactions that occur during assembly of immature capsids.  相似文献   

14.
The full-length provirus of human T-cell leukemia virus type I (HTLV-I) was isolated from MT-2, a lymphoid cell line producing HTLV-I. In transfected cells, structural proteins of HTLV-I, the gag and env products, were formed and processed in the same manner as observed in MT-2 cells. The nucleotide sequence was determined for a region between the gag and pol genes of the proviral DNA clone containing an open-reading frame. The deduced amino acid sequences show that this open-reading frame encodes a putative HTLV-I protease. The protease gene (pro) of HTLV-I was investigated using a vaccinia virus expression vector. Processing of 53k gag precursor polyprotein into mature p19, p24, and p15 gag structural proteins was detectable with a recombinant plasmid harboring the entire gag- and protease-coding sequence. We demonstrated that the protease processed the gag precursor polyprotein in a trans-action. A change in the sequence Asp(64)-Thr-Gly, the catalytic core sequence among aspartyl proteases, to Gly-Thr-Gly was shown to abolish correct processing, suggesting that HTLV-I protease may belong to the aspartyl protease group. The 76k gag-pro precursor polyprotein was identified, implying that a cis-acting function of HTLV-I protease may be necessary to trigger the initial cleavage event for its own release from a precursor protein, followed by the release of p53 gag precursor protein. The p53 gag precursor protein is then processed by the trans-action of the released protease to form p19, p24, and p15.  相似文献   

15.
J Luban  C Lee    S P Goff 《Journal of virology》1993,67(6):3630-3634
We have expressed the human immunodeficiency virus type 1 (HIV-1) protease (PR) in bacteria as a Gag-PR polyprotein (J. Luban and S.P. Goff, J. Virol. 65:3203-3212, 1991). The protein displays enzymatic activity, cleaving the Gag polyprotein precursor Pr55gag to the expected products. The PR enzyme is only active as a dimer, and we hypothesized that PR activation might be used as an indicator of polyprotein multimerization. We constructed 25 linker insertion mutations throughout gag and assessed the PR activity of mutant Gag-PR polyproteins by the appearance of Gag cleavage products in bacterial lysates. All mutant constructs produced stable protein in bacteria. PR activity of the majority of the Gag-PR mutants was indistinguishable from that of the wild type. Six mutants, one with an insertion in the matrix (MA), four with insertions in the capsid (CA), and one with insertions in the nucleocapsid (NC), globally disrupted polyprotein processing. When PR was provided in trans on a separate plasmid, the Gag proteins were cleaved with wild-type efficiency. These results suggest that the gag mutations identified as disruptive of polyprotein processing did not conceal the scissile bonds of the polyprotein. Rather, the mutations prevented PR activation in the context of a Gag-PR polyprotein, perhaps by preventing polyprotein dimerization.  相似文献   

16.
The human immunodeficiency virus type 1 (HIV-1) Gag polyprotein directs the formation of virions from productively infected cells. Many gag mutations disrupt virion assembly, but little is known about the biochemical effects of many of these mutations. Protein-protein interactions among Gag monomers are believed to be necessary for virion assembly, and data suggest that RNA may modify protein-protein interactions or even serve as a bridge linking Gag polyprotein monomers. To evaluate the primary sequence requirements for HIV-1 Gag homomeric interactions, a panel of HIV-1 Gag deletion mutants was expressed in bacteria and evaluated for the ability to associate with full-length Gag in vitro. The nucleocapsid protein, the major RNA-binding domain of Gag, exhibited activity comparable to that of the complete polyprotein. In the absence of the nucleocapsid protein, relatively weak activity was observed that was dependent upon both the capsid-dimer interface and basic residues within the matrix domain. The relevance of the in vitro findings was confirmed with an assay in which nonmyristylated mutant Gags were assessed for the ability to be incorporated into virions produced by wild-type Gag expressed in trans. Evidence of the importance of RNA for Gag-Gag interaction was provided by the demonstration that RNase impairs the Gag-Gag interaction and that HIV-1 Gag interacts efficiently with Gags encoded by distantly related retroviruses and with structurally unrelated RNA-binding proteins. These results are consistent with models in which Gag multimerization involves indirect contacts via an RNA bridge as well as direct protein-protein interactions.  相似文献   

17.
Mason-Pfizer monkey virus (M-PMV) represents the prototype type D retrovirus, characterized by the assembly of intracytoplasmic A-type particles within the infected-cell cytoplasm. These immature particles migrate to the plasma membrane, where they are released by budding. The gag gene of M-PMV encodes a novel protein, p12, just 5' of the major capsid protein (CA) p27 on the polyprotein precursor. The function of p12 is not known, but an equivalent protein is found in mouse mammary tumor virus and is absent from the type C retroviruses. In order to determine whether the p12 protein plays a role in the intracytoplasmic assembly of capsids, a series of in-frame deletion mutations were constructed in the p12 coding domain. The mutant gag genes were expressed by a recombinant vaccinia virus-T7 polymerase-based system in CV-1 cells or in the context of the viral genome in COS-1 cells. In both of these high-level expression systems, mutant Gag precursors were competent to assemble but were not infectious. In contrast, when stable transfectant HeLa cell lines were established, assembly of the mutant precursors into capsids was drastically reduced. Instead, the polyprotein precursors remained predominantly soluble in the cytoplasm. These results show that while p12 is not required for the intracytoplasmic assembly of M-PMV capsids, under the conditions of low-level protein biosynthesis seen in virus-infected cells, it may assist in the stable association of polyprotein precursors for capsid assembly. Moreover, the presence of the p12 coding domain is absolutely required for the infectivity of M-PMV virions.  相似文献   

18.
The 45-kDa assembly protein of human cytomegalovirus is encoded by the C-terminal portion of the UL80 open reading frame (ORF). For herpes simplex virus, packaging of DNA is accompanied by cleavage of its assembly protein precursor at a site near its C terminus, by a protease encoded by the N-terminal region of the same ORF (F. Liu and B. Roizman, J. Virol. 65:5149-5156, 1991). By analogy with herpes simplex virus, we investigated whether a protease is contained within the N-terminal portion of the human cytomegalovirus UL80 ORF. The entire UL80 ORF was expressed in Escherichia coli, under the control of the phage T7 promoter. UL80 should encode a protein of 85 kDa. Instead, the wild-type construct produces a set of proteins with molecular masses of 50, 30, 16, 13, and 5 kDa. In contrast, when mutant UL80 is deleted of the first 14 amino acids, it produces only an 85-kDa protein. These results suggest that the UL80 polyprotein undergoes autoproteolysis. We demonstrate by deletional analysis and by N-terminal sequencing that the 30-kDa protein is the protease and that it originates from the N terminus of UL80. The UL80 polyprotein is cleaved at the following three sites: (i) at the C terminus of the assembly protein domain, (ii) between the 30- and 50-kDa proteins, and (iii) within the 30-kDa protease itself, which yields the 16- and 13-kDa proteins and may be a mechanism to inactivate the protease.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号