首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Over the last 10 years, studies of enzyme systems have demonstrated that, in many cases, H-transfers occur by a quantum mechanical tunneling mechanism analogous to long-range electron transfer. H-transfer reactions can be described by an extension of Marcus theory and, by substituting hydrogen with deuterium (or even tritium), it is possible to explore this theory in new ways by employing kinetic isotope effects. Because hydrogen has a relatively short deBroglie wavelength, H-transfers are controlled by the width of the reaction barrier. By coupling protein dynamics to the reaction coordinate, enzymes have the potential ability to facilitate more efficient H-tunneling by modulating barrier properties. In this review, we describe recent advances in both experimental and theoretical studies of enzymatic H-transfer, in particular the role of protein dynamics or promoting motions. We then discuss possible consequences with regard to tyrosine oxidation/reduction kinetics in Photosystem II.  相似文献   

2.
The reaction of heterotetrameric sarcosine oxidase (TSOX) of Arthrobactor sp. 1-IN has been studied by stopped-flow spectroscopy, with particular emphasis on the reduction of the enzyme by sarcosine. Expression of the cloned gene encoding TSOX in Escherichia coli enables the production of TSOX on a scale suitable for stopped-flow studies. Treatment of the enzyme with sulfite provides the means for selective formation of a flavin-sulfite adduct with the covalent 8alpha-(N(3)-histidyl)-FMN. Formation of the sulfite-flavin adduct suppresses internal electron transfer between the noncovalent FAD (site of sarcosine oxidation) and the covalent FMN (site of enzyme oxidation) and thus enables detailed characterization of the kinetics of FAD reduction by sarcosine using stopped-flow methods. The rate of FAD reduction displays a simple hyperbolic dependence on sarcosine concentration. Studies in the pH range 6.5-10 indicate there are no kinetically influential ionizations in the enzyme-substrate complex. A plot of the limiting rate of flavin reduction/the enzyme-substrate dissociation constant (k(lim)/K(d)) versus pH is bell-shaped and characterized by two macroscopic pK(a) values of 7.4 +/- 0.1 and 10.4 +/- 0.2: potential candidates for the two ionizable groups are discussed with reference to the structure of monomeric sarcosine oxidase (MSOX). The kinetic data are discussed with reference to potential mechanisms for the oxidation of amine molecules by flavoenzymes. Additionally, kinetic isotope effect studies of the rate of C-H bond breakage suggest that a ground-state quantum tunneling mechanism for H-transfer, facilitated by the low-frequency thermal motions of the protein molecule, accounts for C-H bond cleavage by TSOX. TSOX thus provides another example of C-H bond breakage by ground-state quantum tunneling, driven by protein dynamics [vibrationally enhanced ground-state quantum tunneling (VEGST)], for the oxidation of amines by enzymes.  相似文献   

3.
It is generally accepted that enzymes catalyze reactions by lowering the apparent activation energy by transition state stabilization or through destabilization of ground states. A more controversial proposal is that enzymes can also accelerate reactions through barrier compression—an idea that has emerged from studies of H-tunneling reactions in enzyme systems. The effects of barrier compression on classical (over-the-barrier) reactions, and the partitioning between tunneling and classical reaction paths, have largely been ignored. We performed theoretical and computational studies on the effects of barrier compression on the shape of potential energy surfaces/reaction barriers for model (malonaldehyde and methane/methyl radical anion) and enzymatic (aromatic amine dehydrogenase) proton transfer systems. In all cases, we find that barrier compression is associated with an approximately linear decrease in the activation energy. For partially nonadiabatic proton transfers, we show that barrier compression enhances, to similar extents, the rate of classical and proton tunneling reactions. Our analysis suggests that barrier compression—through fast promoting vibrations, or other means—could be a general mechanism for enhancing the rate of not only tunneling, but also classical, proton transfers in enzyme catalysis.  相似文献   

4.
Hydrogen tunneling at room temperature has recently been demonstrated in the reactions catalysed by yeast alcohol dehydrogenase and bovine serum amine oxidase. These results suggest that quantum mechanical effects may be a fundamental and pervasive feature of enzyme-catalysed hydrogen transfer reactions. Our ability to detect such behavior introduces a new probe for the investigation of reaction barrier shape and protein dynamics in enzyme catalysis.  相似文献   

5.
Studies on those enzymes and electron-transfer proteins involved in the catabolism of 'C1' substrates in methylotrophic bacteria have provided a wealth of information concerning the transfer of electrons and hydrogen by quantum tunnelling mechanisms. With regard to H-transfer, studies with MADH have provided the first example of ground-state tunnelling of hydrogen driven by the natural, thermally activated, low-frequency motions of the enzyme molecule. Subsequent studies with related enzymes (e.g. TMADH and bacterial sarcosine oxidase) and with thermophilic alcohol dehydrogenase suggest that vibrationally assisted tunnelling of hydrogen may be more widespread than originally assumed. Our studies of electron transfer in TMADH and ETF have established a role for large-scale protein dynamics in interprotein electron transfer, and have made a contribution to the ongoing debate concerning the mechanism of amine oxidation by enzymes. Moreover, our work has identified a hitherto unknown mechanism for the control of electron density in reduced flavin that influences the rate of electron transfer between redox centres within a protein molecule. Despite this progress, however, many questions still remain to be resolved. With the development of more sophisticated experimental techniques (and also continued financial support from the funding agencies!), the mechanistic uncertainties surrounding the quantum mechanical transfer of electrons and hydrogen in biological molecules should be transmogrified into the certainties one more readily acquaints with the classical world.  相似文献   

6.
Many biological C-H activation reactions exhibit nonclassical kinetic isotope effects (KIEs). These nonclassical KIEs are too large (kH/kD > 7) and/or exhibit unusual temperature dependence such that the Arrhenius prefactor KIEs (AH/AD) fall outside of the semiclassical range near unity. The focus of this minireview is to discuss such KIEs within the context of the environmentally coupled hydrogen tunneling model. Full tunneling models of hydrogen transfer assume that protein or solvent fluctuations generate a reactive configuration along the classical, heavy-atom coordinate, from which the hydrogen transfers via nuclear tunneling. Environmentally coupled tunneling also invokes an environmental vibration (gating) that modulates the tunneling barrier, leading to a temperature-dependent KIE. These properties directly link enzyme fluctuations to the reaction coordinate for hydrogen transfer, making a quantum view of hydrogen transfer necessarily a dynamic view of catalysis. The environmentally coupled hydrogen tunneling model leads to a range of magnitudes of KIEs, which reflect the tunneling barrier, and a range of AH/AD values, which reflect the extent to which gating modulates hydrogen transfer. Gating is the primary determinant of the temperature dependence of the KIE within this model, providing insight into the importance of this motion in modulating the reaction coordinate. The potential use of variable temperature KIEs as a direct probe of coupling between environmental dynamics and the reaction coordinate is described. The evolution from application of a tunneling correction to a full tunneling model in enzymatic H transfer reactions is discussed in the context of a thermophilic alcohol dehydrogenase and soybean lipoxygenase-1.  相似文献   

7.
In 2008, a successful computational design procedure was reported that yielded active enzyme catalysts for the Kemp elimination. Here, we studied these proteins together with a set of previously unpublished inactive designs to determine the sources of activity or lack thereof, and to predict which of the designed structures are most likely to be catalytic. Methods that range from quantum mechanics (QM) on truncated model systems to the treatment of the full protein with ONIOM QM/MM and AMBER molecular dynamics (MD) were explored. The most effective procedure involved molecular dynamics, and a general MD protocol was established. Substantial deviations from the ideal catalytic geometries were observed for a number of designs. Penetration of water into the catalytic site and insufficient residue‐packing around the active site are the main factors that can cause enzyme designs to be inactive. Where in the past, computational evaluations of designed enzymes were too time‐extensive for practical considerations, it has now become feasible to rank and refine candidates computationally prior to and in conjunction with experimentation, thus markedly increasing the efficiency of the enzyme design process.  相似文献   

8.
Accumulating experimental evidence suggests that the occurrence of hydrogen tunneling is likely to be widespread in enzyme-catalyzed reactions. The realization that hydrogen can transfer via tunneling mechanisms has far-reaching implications for our understanding of enzyme catalysis involving proton, hydride or hydrogen atom transfer reactions. The current status of the field is highlighted by three enzyme systems that have been under intensive study in recent years, including soybean lipoxygenase-1, thermophilic alcohol dehydrogenase and dihydrofolate reductase. Particular attention has been devoted to the issues of whether protein dynamics modulate hydrogen tunneling probability and whether the tunneling process contributes to the catalytic power of enzymes.  相似文献   

9.
Enzymatic breakage of the substrate C-H bond by Methylophilus methyltrophus (sp. W3A1) methylamine dehydrogenase (MADH) has been studied by stopped-flow spectroscopy. The rate of reduction of the tryptophan tryptophylquinone (TTQ) cofactor has a large kinetic isotope effect (KIE = 16.8 +/- 0.5), and the KIE is independent of temperature. Analysis of the temperature dependence of C-H bond breakage revealed that extreme (ground state) quantum tunneling is responsible for the transfer of the hydrogen nucleus. Reaction rates are strongly dependent on temperature, indicating thermally induced, vibrational motion drives the H-transfer reaction. The data provide direct experimental evidence for enzymatic bond breakage by extreme tunneling driven by vibrational motion of the protein scaffold. The results demonstrate that classical transition state theory and its tunneling derivatives do not adequately describe this enzymatic reaction.  相似文献   

10.
To explore the origin of the large-scale motion of triosephosphate isomerase's flexible loop (residues 166 to 176) at the active site, several simulation protocols are employed both for the free enzyme in vacuo and for the free enzyme with some solvent modeling: high-temperature Langevin dynamics simulations, sampling by a "dynamics driver" approach, and potential-energy surface calculations. Our focus is on obtaining the energy barrier to the enzyme's motion and establishing the nature of the loop movement. Previous calculations did not determine this energy barrier and the effect of solvent on the barrier. High-temperature molecular dynamics simulations and crystallographic studies have suggested a rigid-body motion with two hinges located at both ends of the loop; Brownian dynamics simulations at room temperature pointed to a very flexible behavior. The present simulations and analyses reveal that although solute/solvent hydrogen bonds play a crucial role in lowering the energy along the pathway, there still remains a high activation barrier. This finding clearly indicates that, if the loop opens and closes in the absence of a substrate at standard conditions (e.g., room temperature, appropriate concentration of isomerase), the time scale for transition is not in the nanosecond but rather the microsecond range. Our results also indicate that in the context of spontaneous opening in the free enzyme, the motion is of rigid-body type and that the specific interaction between residues Ala176 and Tyr208 plays a crucial role in the loop opening/closing mechanism.  相似文献   

11.
M Conrad 《Bio Systems》1992,27(4):223-233
The activity of enzymes and other biological macromolecules is often sensitively dependent on physiochemical context. Seed germination provides an analogy that helps to elicit the control and information processing capabilities of enzymatic networks. Like a seed, the enzyme takes a particular action (complexes with a specific substrate and catalyzes a specific reaction) when a specific set of milieu influences is satisfied. The context sensitivity, specificity and speed are enormously enhanced by the parallelism inherent in the electronic wave function (i.e. by the superposition of electronic states). This parallelism is converted to speedup through electronic-conformational interactions. The quantum speedup effect allows biological 'switches' to have qualitatively greater pattern recognition capabilities than electronic switches. Consequently the information processing and control capabilities of biomolecular systems exceed the capabilities obtainable from classical models and exceed the intuitive expectations that have developed through the study of such models.  相似文献   

12.
Residues M42 and G121 of Escherichia coli dihydrofolate reductase (ecDHFR) are on opposite sides of the catalytic centre (15 and 19 A away from it, respectively). Theoretical studies have suggested that these distal residues might be part of a dynamics network coupled to the reaction catalysed at the active site. The ecDHFR mutant G121V has been extensively studied and appeared to have a significant effect on rate, but only a mild effect on the nature of H-transfer. The present work examines the effect of M42W on the physical nature of the catalysed hydride transfer step. Intrinsic kinetic isotope effects (KIEs), their temperature dependence and activation parameters were studied. The findings presented here are in accordance with the environmentally coupled hydrogen tunnelling. In contrast to the wild-type (WT), fluctuations of the donor-acceptor distance were required, leading to a significant temperature dependence of KIEs and deflated intercepts. A comparison of M42W and G121V to the WT enzyme revealed that the reduced rates, the inflated primary KIEs and their temperature dependences resulted from an imperfect potential surface pre-arrangement relative to the WT enzyme. Apparently, the coupling of the enzyme's dynamics to the reaction coordinate was altered by the mutation, supporting the models in which dynamics of the whole protein is coupled to its catalysed chemistry.  相似文献   

13.
Hammes-Schiffer S 《Biochemistry》2002,41(45):13335-13343
Experimental and theoretical data imply that enzyme motion plays an important role in enzymatic reactions. Enzyme motion can influence both the activation free energy barrier and the degree of barrier recrossing. A hybrid theoretical approach has been developed for the investigation of the relation between enzyme motion and activity. This approach includes both electronic and nuclear quantum effects. It distinguishes between thermally averaged promoting motions that influence the activation free energy barrier and dynamical motions that influence the barrier recrossings. Applications to hydride transfer in liver alcohol dehydrogenase and dihydrofolate reductase resulted in the identification and characterization of important enzyme motions. These applications have also led to the proposal of a network of coupled promoting motions in enzymatic reactions. These concepts have important implications for protein engineering and drug design.  相似文献   

14.
We present a general formulation of a model that can be used to analyze reaction profiles in systems in which a single enzyme catalyzes several sequential reactions with the same molecular backbone. The analysis of these so-called "repeated-attack systems" allows estimation of the specificities that the enzyme has for the various intermediate substrates that appear in the reaction mixture, relative to the specificity that it has for the initial substrate. Our analytical method has the important advantage that it is not affected by competitive or uncompetitive inhibition, nor by denaturation of the enzyme during the reaction. We carry out case studies in three different systems, the lipase-catalyzed alcoholysis of triacylglycerols, the phytase-catalyzed removal of phosphate groups from phytic acid and the beta-amylase-catalyzed removal of maltose units from maltoheptaose. Our model fits well to all reaction profiles in which the phenomenon of processivity does not occur. It can therefore be used as a general tool for characterizing the relative specificities of "repeated-attack enzymes".  相似文献   

15.
Studies were conducted to determine the role that diffusion may play in the in vivo kinetics of the Escherichia coli periplasmic enzyme, alkaline phosphatase (AP, encoded by the gene pho A). Passive diffusion of solutes, from solution into the periplasm, is thought to occur mainly through porins in the outer membrane. The outer membrane therefore serves as a diffusion barrier separating a population of periplasmic enzymes from bulk substrate. E. coli strains containing a plasmid with the pho A gene linked to the lac promoter were used in this study in order to vary the amount of enzyme per cell. Alkaline phosphatase assays were conducted with intact cells, and the substrate concentration at half-maximum velocity (normally the Km for the enzyme) was determined as a function of enzyme concentration per cell. The results showed that diffusion of substrate to the enzyme caused as much as a 1000-fold change in this parameter, compared to that of purified enzyme. This suggested that diffusion was the rate-limiting step of the enzymatic reaction in these cells. In agreement with this type of reaction, Eadie-Hofstee and Lineweaver-Burk plots were not linear. At their extremes, these plots represented two types of kinetics. At high substrate concentration, equilibrium of substrate between bulk solution and the periplasm was achieved, and the kinetic properties conformed to Michaelis-Menten. At low substrate concentrations, there were a large number of free (unbound) enzymes, and each substrate molecule that entered the periplasm, through the diffusion barrier, resulted in product formation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
It is now widely accepted that substrate C-H bond breakage by quinoprotein enzymes occurs by quantum mechanical tunneling. This paradigm shift in the conceptual framework for these reactions away from semi-classical transition state theory (i.e., including zero-point energy but with no tunneling correction) has been driven over recent years by experimental studies of the temperature dependence of kinetic isotope effects for these reactions in the TTQ-dependent enzymes methylamine dehydrogenase and aromatic amine dehydrogenase, which produced observations also inconsistent with the simple Bell correction model of tunneling. However, these data-specifically, the strong temperature dependence of reaction rates and the variable temperature dependence of kinetic isotope effects-are consistent with other tunneling models (denoted full tunneling models) in which protein and/or substrate fluctuations generate a configuration compatible with tunneling. These models accommodate substrate/protein (environment) fluctuations required to attain a configuration with degenerate quantum states and, when necessary, motion required to increase the probability of tunneling in these states. Furthermore, tunneling mechanisms in quinoproteins are supported by computational studies employing variational transition state theory with multidimensional tunneling corrections; these studies are also discussed in this review. Potential pitfalls in analyzing the temperature dependence of kinetic isotope effects as probes of tunneling are also discussed with reference to PQQ-dependent methanol dehydrogenase.  相似文献   

17.
The applicability of an electron density-proton transfer mechanism to account for the catalytic activity of enzymes has been examined in specific enzyme reactions. A concerted displacement of a number of negatively charged atomic components in one direction, countered by an associated transfer of protons or other positive components in the opposite direction appears to be involved in the reactions studied. The charges on the components, which are revealed by the Fajans electron density configurations, relate to the continuous changes of the intensities of the electrostatic interactions along the reaction co-ordinates. When the components have converged close enough together, the continuous nature of the changes corresponds to a reduction of the energy barrier due to energy gained from the bond forming process as the bond rupturing process is taking place. From this perspective, the utilization of the binding energy between the enzyme and substrate to reduce the energy barrier, the electrostatic stabilization of the transition state, and concerted, polyfunctional acid-base catalysis can all be seen as aspects of the same Coulombic process. Conformational changes may serve to extend these co-ordinated displacements over a wider area around the active site. Comparisons to other theories and supporting observations are described.  相似文献   

18.
C-H bond breakage by tryptophan tryptophylquinone (TTQ)-dependent methylamine dehydrogenase (MADH) occurs by vibrationally assisted tunneling (Basran, J., Sutcliffe, M. J., and Scrutton, N. S. (1999) Biochemistry 38, 3218--3222). We show here a similar mechanism in TTQ-dependent aromatic amine dehydrogenase (AADH). The rate of TTQ reduction by dopamine in AADH has a large, temperature independent kinetic isotope effect (KIE = 12.9 +/- 0.2), which is highly suggestive of vibrationally assisted tunneling. H-transfer is compromised with benzylamine as substrate and the KIE is deflated (4.8 +/- 0.2). The KIE is temperature-independent, but reaction rates are strongly dependent on temperature. With tryptamine as substrate reaction rates can be determined only at low temperature as C-H bond cleavage is rapid, and an exceptionally large KIE (54.7 +/- 1.0) is observed. Studies with deuterated tryptamine suggest vibrationally assisted tunneling is the mechanism of deuterium and, by inference, hydrogen transfer. Bond cleavage by MADH using a slow substrate (ethanolamine) occurs with an inflated KIE (14.7 +/- 0.2 at 25 degrees C). The KIE is temperature-dependent, consistent with differential tunneling of protium and deuterium. Our observations illustrate the different modes of H-transfer in MADH and AADH with fast and slow substrates and highlight the importance of barrier shape in determining reaction rate.  相似文献   

19.
Sulfation, catalyzed by members of the sulfotransferase enzyme family, is a major metabolic pathway which modulates the biological activity of numerous endogenous and xenobiotic chemicals. A number of these enzymes have been expressed in prokaryotic and eukaryotic systems to produce protein for biochemical and physical characterization. However, the effective use of heterologous expression systems to produce recombinant enzymes for such purposes depends upon the expressed protein faithfully representing the "native" protein. For human sulfotransferases, little attention has been paid to this despite the widespread use of recombinant enzymes. Here we have validated a number of heterologous expression systems for producing the human dopamine-metabolizing sulfotransferase SULT1A3, including Escherichia coli, Saccharomyces cerevisiae, COS-7, and V79 cells, by comparison of Km values of the recombinant enzyme in cell extracts with enzyme present in human platelets and with recombinant enzyme purified to homogeneity following E. coli expression. This is the first report of heterologous expression of a cytosolic sulfotransferase in yeast. Expression of SULT1A3 was achieved in all cell types, and the Km for dopamine under the conditions applied was approximately 1 microM in all heterologous systems studied, which compared favorably with the value determined with human platelets. We also determined the subunit and native molecular weights of the purified recombinant enzyme by SDS-PAGE, electrospray ionization mass spectrometry, dynamic light scattering, and sedimentation analysis. The enzyme purified following expression in E. coli existed as a homodimer with Mr approximately 68,000 as determined by light scattering and sedimentation analysis. Mass spectrometry revealed two species with experimentally determined masses of 34,272 and 34,348 which correspond to the native protein with either one or two 2-mercaptoethanol adducts. We conclude that the enzyme expressed in prokaryotic and eukaryotic heterologous systems, and also purified from E. coli, equates to that which is found in human tissue preparations.  相似文献   

20.
Roca M  Liu H  Messer B  Warshel A 《Biochemistry》2007,46(51):15076-15088
The possible relationship between the thermal stability and the catalytic power of enzymes is of great current interest. In particular, it has been suggested that thermophilic or hyperthermophilic (Tm) enzymes have lower catalytic power at a given temperature than the corresponding mesophilic (Ms) enzymes, because the thermophilic enzymes are less flexible (assuming that flexibility and catalysis are directly correlated). These suggestions presume that the reduced dynamics of the thermophilic enzymes is the reason for their reduced catalytic power. The present paper takes the specific case of dihydrofolate reductase (DHFR) and explores the validity of the above argument by simulation approaches. It is found that the Tm enzymes have restricted motions in the direction of the folding coordinate, but this is not relevant to the chemical process, since the motions along the reaction coordinate are perpendicular to the folding motions. Moreover, it is shown that the rate of the chemical reaction is determined by the activation barrier and the corresponding reorganization energy, rather than by dynamics or flexibility in the ground state. In fact, as far as flexibility is concerned, we conclude that the displacement along the reaction coordinate is larger in the Tm enzyme than in the Ms enzyme and that the general trend in enzyme catalysis is that the best catalyst involves less motion during the reaction than the less optimal catalyst. The relationship between thermal stability and catalysis appears to reflect the fact that to obtain small electrostatic reorganization energy it is necessary to invest some folding energy in the overall preorganization process. Thus, the optimized catalysts are less stable. This trend is clearly observed in the DHFR case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号