首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The regulation of avian lipoprotein lipase by dibutyryl cyclic AMP in cultured adipocytes was studied with quantitative and specific methods for the measurements of enzyme catalytic activity, enzyme protein mass, and immunoadsorption of labeled enzyme. Incubation of adipocytes in 0.5 mM dibutyryl cyclic AMP plus 0.5 mM theophylline results in a time-dependent decrease in cell lipoprotein lipase catalytic activity. The activity is decreased by 70% in 4 h and over 90% by 12 h. The decrease in cellular catalytic activity is due to a decrease in both enzyme content and enzyme catalytic efficiency. 4 h after exposure of adipocytes to cAMP, enzyme protein was decreased from 3.58 +/- 0.5 to 1.92 +/- 0.1 ng/dish and specific activity from 15.1 +/- 2.1 to 8.4 +/- 1.1 nmol/ng. In the presence of 0.5 mM theophylline, the dibutyryl cyclic AMP-mediated decrease in lipoprotein lipase activity was half-maximal at less than 25 microM dibutyryl cyclic AMP. The rate of lipoprotein lipase synthesis was estimated by measuring the incorporation of L-[35S]methionine into enzyme protein during 30 min. A method for the quantitative immunoadsorption of lipoprotein lipase from cell lysates was developed. Utilizing this immunoadsorption technique, the rate of incorporation of L-[35S]methionine into lipoprotein lipase was 0.0026 +/- 0.002%, when expressed as a percentage of that incorporated into total trichloroacetic acid-precipitable counts. By 2 h after exposure of adipocytes to 0.5 mM dibutyryl cAMP, the relative synthesis rate had already decreased to 64 +/- 4% of the control rate. After 16 h the synthesis rate was 43.2 +/- 13.8% of the control rate. The observed decreased synthesis rate could account for most of the decreased cellular enzyme content and diminished enzyme secretion rate.  相似文献   

2.
Equilibrium-binding data of highly purified 125I-labeled avian lipoprotein lipase to cultured avian adipocytes demonstrate the presence of a class of high affinity binding sites. Analysis of the binding function yielded an association constant of 0.62 x 10(8)M-1 and a maximum binding capacity of 2.1 micrograms/60-mm dish. From a time course of dissociation of 125I-lipoprotein lipase from adipocytes at 4 degrees C, a dissociation rate constant of 6.1 x 10(-5)s-1 was obtained. Pretreatment of cells with heparinase and heparitinase resulted in a quantitative suppression of the high affinity binding component, establishing that lipoprotein lipase is bound to cell surface heparan sulfate proteoglycans. At 37 degrees C, cell surface-bound 125I-lipoprotein lipase is internalized and either degraded or recycled to the medium. The degradation rate constant for 125I-lipoprotein lipase was estimated to be 0.78 h-1. The degradation rate constant was reduced 6-fold when cells were exposed to 100 microM chloroquine, indicating that most of the degradation occurs within the lysosomal compartment. By using cells that had been pulsed with Trans35S-label for 1 h, it was demonstrated that acute treatment with endoglycosidases for up to 1 h resulted in a new lipoprotein lipase secretion rate which was 6-fold higher than that of control cells. Degradation of newly synthesized lipoprotein lipase was essentially blocked 30 min after the initiation of the chase. In other studies it was observed that there were no additive effects of chloroquine and either endoglycosidase or heparin treatment on total lipoprotein lipase levels (intracellular, cell surface, and medium) in adipocyte cultures. These experiments support the hypothesis that the release of lipoprotein lipase from its receptor prevents its internalization and degradation and enhances enzyme efflux from the adipocyte. A new model of lipoprotein lipase secretion in cultured adipocytes is proposed: Newly synthesized lipoprotein lipase is transported to the cell surface where it binds to specific heparan sulfate proteoglycan receptors. The enzyme is either released to the medium or internalized via the receptor, in which case the enzyme is degraded or recycled to the cell surface. Major determinants of enzyme efflux from the cell surface include the number and integrity of receptors, the association constant of the enzyme-receptor complex, and the presence in the medium of competing molecules with high affinity for lipoprotein lipase. In this model, modulation of lipoprotein lipase degradation rate may be a significant mechanism for acute regulation of enzyme efflux independent of changes in the rate of enzyme synthesis.  相似文献   

3.
In avian-cultured adipocytes 76% of the newly synthesized lipoprotein lipase is degraded before release into the medium (Cupp, M., Bensadoun, A., and Melford, K. (1987) J. Biol. Chem. 262, 6383-6388). The same group (Cisar, L. A., Hoogewerf, A. J., Cupp, M., Rapport, C. A., and Bensadoun, A. (1989) J. Biol. Chem. 264, 1767-1774) has proposed that the interaction of lipoprotein lipase with a class of cell surface heparan sulfate proteoglycans is necessary for degradation to occur. To test further this hypothesis, the binding capacity of the plasma membrane for the lipase was decreased by inhibiting the sulfation of glycosaminoglycans with sodium chlorate, an inhibitor of sulfate adenyltransferase. Chlorate decreased sulfate incorporation into trypsin-releasable heparan sulfate proteoglycans to 20% of control levels. The amount of uronic acid in the trypsin-releasable heparan sulfate proteoglycans remained constant. Therefore, chlorate decreased sulfation density on heparan sulfate chains by approximately 5-fold. In the same fractions, chlorate increased the median heparan sulfate Mr measured on Sephacryl S-300. Chlorate decreased the maximum binding of 125I-lipoprotein lipase to adipocytes by 4-fold, but no significant effects on the affinity constants were observed. Chlorate increased lipoprotein lipase secretion in a dose-dependent relationship up to 30 mM. Utilizing a pulse-chase protocol, it was shown that lipase synthesis in control and chlorate-treated cells was not significantly different and that the increased secretion could be accounted for by a decreased lipoprotein lipase degradation rate. In control cells 77 +/- 11% of the synthesized enzyme was degraded whereas in chlorate-treated cells degradation was reduced to 42 +/- 9% of the synthesized amount. The present study shows that decreased sulfation of heparan sulfate proteoglycans decreases the maximum binding of the lipase for the adipocyte cell surface. Consistent with the model that binding of lipoprotein lipase to cell surface heparan sulfate is required for lipase degradation, degradation is reduced in chlorate-treated cultures. In this report it is also shown that chlorate inhibits lipoprotein lipase sulfation and that desulfation of the enzyme has no effect on its catalytic efficiency or on its binding to cultured adipocytes.  相似文献   

4.
Lipoprotein lipase (LPL) is the enzyme responsible for hydrolysis of circulating triglyceride-rich lipoproteins and is important for storage of adipocyte lipid. To study the regulation of LPL synthetic rate in adipose tissue, primary cultures of isolated rat adipocytes were pulse-labeled with [35S]methionine, and LPL was immunoprecipitated with an LPL-specific antibody. A pulse-chase experiment identified the cellular and secreted forms of LPL as a 55-57-kDa protein. In the presence of heparin, there was a large increase in secretion of newly synthesized LPL from the cells, although heparin did not stimulate cellular LPL synthetic rate. When cells were exposed to insulin for 2 h, pulse-labeling revealed that insulin stimulated a maximal dose-related increase in LPL synthetic rate of 300% of control. This increase in LPL synthetic rate was observed after an exposure to insulin for as little as 60 min and was accompanied by only a 10-25% increase in total protein synthesis. In addition, insulin had no effect on the turnover of intracellular LPL. Using a cDNA probe for LPL, insulin induced a 2-fold increase in the LPL mRNA. Thus, insulin stimulated an increase in specific LPL mRNA in isolated rat adipocytes. This increase in LPL mRNA then leads to an increase in the synthetic rate of the LPL protein.  相似文献   

5.
3T3-L1 adipocytes in culture incorporated [35S]methionine into a protein which could be immunoprecipitated with chicken antiserum to bovine lipoprotein lipase. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed this protein had an Mr of 55,000, similar to that of bovine lipoprotein lipase, and accounted for 0.1-0.5% of total protein synthesis in the adipocytes. Lipoprotein lipase protein was present in small amounts in confluent 3T3-L1 fibroblasts, and the amount increased many-fold as the cells differentiated into adipocytes. This increase was accompanied by parallel increases in cellular lipase activity and secretion. When cells were grown with [35S]methionine, the amount of label incorporated into lipoprotein lipase increased for 2 h and then leveled off. Pulse-chase experiments showed that half-life of newly synthesized lipase was about 1 h. Turnover of lipoprotein lipase in control cells involved both release to the medium and intracellular degradation. When N-linked glycosylation was blocked by tunicamycin, the cells synthesized a form of lipase that had a smaller Mr (48,000), was catalytically inactive, and was not released to the medium. Radioimmunoassay demonstrated that 3T3-L1 adipocytes contained an unexpectedly large amount of lipoprotein lipase protein. 55% of the enzyme protein in acetone/ether powder of the cells was insoluble in 50 mM NH3/NH4Cl at pH 8.1, a solution commonly used to extract lipoprotein lipase; 27% of the lipase protein was soluble but did not bind to heparin-Sepharose and had very low lipase activity; and the remaining 13% was soluble, bound to heparin-Sepharose, and had high lipolytic activity. About one-half of the lipase released spontaneously to the medium was inactive, and lipase inactivation proceeded in the medium with little loss of enzyme protein. Lipoprotein lipase released heparin, in contrast, was fully active and more stable. When protein synthesis was blocked by cycloheximide, the level of lipoprotein lipase activity in adipocytes decreased more rapidly than the amount of lipase protein in the cells. Most of the inactive lipoprotein lipase in adipocytes probably results from dissociation of active dimeric lipase, but some could be a precursor of active enzyme.  相似文献   

6.
Lipoprotein lipase synthesized by cultured rat preadipocytes is present in three compartments: an intracellular, a surface-related 3-min heparin-releasable, and that secreted into the culture medium. 30 min after addition of 6 microM monensin, the lipoprotein lipase activity in the heparin-releasable compartment starts to decrease; by 4 h of monensin treatment the lipoprotein lipase activity in the heparin-releasable pool and in the culture medium is about 10% of that found in control dishes. The intracellular activity, which had been identified as lipoprotein lipase by an antiserum to lipoprotein lipase, increases slowly and doubles by 24 h. However, since the cellular compartment accounts for 10-25% of total activity, this increase does not account for the missing enzyme activity. To determine whether this enzyme molecule is synthesized but is not active, incorporation of labeled leucine, mannose and galactose into immunoadsorbable lipoprotein lipase was studied in control, monensin- or tunicamycin-treated cells. Addition of tunicamycin (5 micrograms/ml) for 24 h caused a 30-50% reduction in immunoadsorbable lipoprotein lipase, but the enzyme activity was reduced by 90%. On the other hand, 4 h monensin treatment reduced both incorporation of [3H]leucine into immunoadsorbable lipoprotein lipase and heparin-releasable and medium lipoprotein lipase activity by 57 to 77%. The immunoadsorbable lipoprotein lipase in the intracellular compartment has a [14C]mannose to [3H]galactose ratio of 0.15 and this ratio increased 6-fold in monensin-treated cells. The intracellular lipoprotein lipase in monensin-treated cells had the same affinity for both the native and synthetic substrate as the lipoprotein lipase in control cells, yet its spontaneous secretion into the culture medium and its release by 3 min heparin treatment was markedly decreased. The present results indicate that: the presence of asparagine-linked oligosaccharide (formation of which is inhibited by tunicamycin) is mandatory for the expression of lipoprotein lipase activity; lipoprotein lipase is active also in a high mannose form; and terminal glycosylation and oligosaccharide processing, which is inhibited by monensin, may be important for the appearance of heparin-releasable lipoprotein lipase and secretion of lipoprotein lipase into the medium.  相似文献   

7.
The release of hepatic triglyceride lipase from cultured rat hepatocytes and its hormonal regulation were studied. The activity of lipase released into the medium in the presence of heparin was increasing for 24 hours on the 2nd day of culture. The activity in the absence of heparin was only 10% of that in the presence of heparin. When hepatocytes were cultured with anti-hepatic triglyceride lipase IgG, the lipase activity was suppressed by 92%. The results suggest that the enzyme released into the culture medium is identical to hepatic triglyceride lipase which can be released only in the presence of heparin, the mode of release being similar to that of lipoprotein lipase from adipocytes. The addition of colchicine and monensin to the medium resulted in the inhibition of lipase secretion by 20% and 61%, respectively. Insulin enhanced lipase activity only 20%, whereas dexamethasone suppressed the activity by 44%. These data indicated that hepatic triglyceride lipase is secreted and released from hepatocytes in the presence of heparin and its secretion is regulated by hormones.  相似文献   

8.
Regulation of the secretion of lipoprotein lipase by mouse macrophages   总被引:4,自引:0,他引:4  
The regulation of the secretion of lipoprotein lipase was studied in primary cultures of mouse peritoneal macrophages and in the murine macrophage cell line J774. As previously reported, both cell types secrete a lipase with the characteristics of lipoprotein lipase. Incubation of macrophages with insulin, insulin-like growth factor, and L-thyroxine had no effect on lipoprotein lipase secretion. Incubation with dexamethasone and with several agents which increase intracellular cyclic AMP led to a decrease in lipoprotein lipase secretion by mouse peritoneal macrophages. These results suggest that the hormonal regulation of lipoprotein lipase in macrophages is different from that in adipose tissue and heart muscle. Incubation of the macrophages with heparin caused a marked increase in the secretion of lipoprotein lipase. Short incubations with heparin (5 min) caused a release of the enzyme into the media, while longer incubations caused a 2-8-fold increase in net lipoprotein lipase secretion which was maximal after 2-16 h depending on cell type, and persisted for 24 h. The effect of heparin was dose-dependent and specific (it was not duplicated by other glycosaminoglycans). The mechanism of heparin-induced increase in lipoprotein lipase secretion was explored. The increase was not caused by the release of a presynthesized intracellular pool of lipoprotein lipase or by the stabilization of lipoprotein lipase by heparin after secretion. The heparin-induced increase in lipoprotein lipase secretion was dependent on protein synthesis. The secretion of lipoprotein lipase by macrophages in response to low levels of heparin may be a significant factor in the formation of atherosclerotic lesions.  相似文献   

9.
Lipoprotein lipase activity was higher in fat-pad pieces than in isolated adipocytes from the same fed rats, whereas hydrolysis of triacylglycerols from triacylglycerol-rich lipoproteins was similar in the two preparations when incubated either in basal conditions or in the presence of heparin. In both preparations there was a similar release of lipoprotein lipase activity into the medium during basal incubation, enhanced by the presence of heparin. In fat-pad pieces, but not in isolated adipocytes, incubation with heparin produced a decrease in the lipoprotein lipase activity measured in the tissue preparation. In fat-pad pieces from 24 h-starved rats, lipoprotein lipase activity was the same as in isolated adipocytes from the same animals and incubation with heparin did not affect the appearance of lipoprotein lipase in the medium or the utilization of triacylglycerols from triacylglycerol-rich lipoproteins. These results support the following conclusions. (1) The effectiveness of lipoprotein lipase in adipose tissue preparations in vitro depends more on its availability to the substrate than on its total activity. (2) Heparin acts on adipose tissue preparations from fed animals both by enhancing the release of pre-existing extracellular enzyme (which is absent in isolated adipocytes) and by enhancing the transfer outside the cells of the intracellular (and mainly undetectable) enzyme that is activated in the secretion process. (3) In adipose tissue from starved animals there is not only a decrease in the active extracellular form of lipoprotein lipase activity but also a reduction in the intracellular (and mainly undetectable) pool of the enzyme.  相似文献   

10.
The location of lipoprotein lipase activity in rat adipose tissue was studied using intact epididymal fat pads, isolated adipocytes, and lipoprotein lipase activity secreted from adipocytes as enzyme sources. The enzyme activities of these preparations were characterized by gel filtration. The method used for isolation of adipocytes had been modified to minimize activation of lipoprotein lipase during the procedures. Extracts of intact adipose tissue separated into two major lipoprotein lipase activity peaks, designated "a" and "b", the "a" fraction representing about 30 (fasted rats) to 50% (fed rats) of the total enzyme activity. An intermediate fraction (designated "i") was frequently observed. Extracts of isolated adipocytes from fed rats contained about 35% and those from fasted rats about 65% of the lipoprotein lipase activity present in intact tissue. The "b" fraction constituted 80--97% of the adipocyte lipoprotein lipase activity. In contrast, the enzyme activity secreted from the adipocytes contained only the "a" and "i" fractions. These data implicate the existance of one intracellular form of lipoprotein lipase (corresponding to the "b" fraction), different from extracellular forms of the enzyme (corresponding to fractions "a" and "i"). A transformation of the intracellular to the extracellular forms appears to occur in conjunction with secretion of enzyme from the fat cell.  相似文献   

11.
12.
AimsFucoidan, a sulfated polysaccharide extracted from brown seaweed (F. vesiculosus) is recognized as an effective anticoagulant but its anti-lipidemic potency has not been well defined. We investigated the effect of fucoidan on lipoprotein lipase (LPL) secretion by human adipocytes.Main methodsLPL mRNA and protein expressions were measured using semi-quantitative RT-PCR, ELISA and immunohistochemistry in cultured adipocytes with or without fucoidan treatment. LPL enzyme activity was determined by a fluorometric assay.Key findingsIn cultured adipocytes, fucoidan induced LPL secretion in a dose- and time-dependent manner. An initial increase in LPL was maintained at a significant level but much slower than that in heparin-treated cells. Fucoidan also dose-dependently induced a cofactor of LPL, the apolipoprotein C-II (ApoC-II) secretion. In fucoidan-treated cells, LPL mRNA was time-dependently increased and LPL protein expression was also inceased. Treatment with both heparin and fucoidan showed no further increase in media LPL activity compared to heparin alone. In the conditioned medium from fucoidan-treated cells followed for 4 h, LPL activity decayed exponentially with half-life of about 180 min. In addition, the extracellular LPL mass in cycloheximide (a protein synthesis inhibitor) and fucoidan-treated cells did not change markedly, but LPL shifted significantly from active to inactive form.SignificanceThese results suggest that fucoidan acts like heparin by releasing LPL in addition to increasing the intracellular transport and decreasing the degradation of LPL in the medium. Furthermore, LPL and ApoC-II secretion induced by fucoidan may be involved in regulating plasma triglyceride lowering clearance.  相似文献   

13.
Cells isolated from newborn rat hearts were cultured in the presence of 100 mM Hepes (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid). Lipoprotein lipase activity was present in an intracellular and heparin-releasable pool and was also secreted into the culture medium. Treatment of the cultures with 5 micrograms/ml tunicamycin caused almost complete loss of lipoprotein lipase activity in all three compartments. In control cultures, immunoblotting of lipoprotein lipase derived from all three pools revealed a single band of lipoprotein lipase with an apparent Mr of 56,000. In the tunicamycin-treated cultures, the enzyme appeared only intracellularly and had an apparent Mr of 49,000. No immunoreactive enzyme was found in the medium. Thus, glycosylation of lipoprotein lipase in heart cell cultures is mandatory for enzyme activity and translocation from an intracellular to the heparin-releasable pool and for secretion into the medium.  相似文献   

14.
Combined lipase deficiency (cld) is a recessive mutation which causes a severe deficiency of lipoprotein lipase and hepatic lipase activities and lethal hypertriacylglycerolemia within 3 days in newborn mice. The effect of this genetic defect on lipoprotein lipase was studied in primary cultures of brown adipocytes derived from tissue of newborn mice. Cells cultured from cld/cld mice replicated, accumulated triacylglycerol, and differentiated into adipocytes at normal rates. Lipoprotein lipase activity in unaffected cells was detectable on Day 0 of confluence and increased to 1.3 units/mg DNA by Day 6, while that in cld/cld cells was less than 4% of that in unaffected cells on Days 4-6. Unaffected cells released 1.2% of their lipase activity in 30 min in the absence of heparin, and 11% in 10 min in the presence of heparin, whereas cld/cld cells released no lipase activity. cld/cld cells contained 2-3 times as much lipoprotein lipase protein as unaffected cells, and released no lipase protein to the medium. Immunofluorescent lipoprotein lipase was not detectable in unaffected adipocytes unless lipase secretion was blocked with monesin, causing retention of the lipase in Golgi. cld/cld adipocytes, in contrast, contained immunofluorescent lipoprotein lipase distributed in a diffuse reticular pattern, indicating retention of lipase in endoplasmic reticulum. Lipoprotein lipase immunoprecipitated from cells incubated 1-3 h with [35S]methionine was digested with or without endoglycosidase H (endo H) or F, and resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Lipoprotein lipase in unaffected cells (Mr = 56,000-58,000) consisted of three glycosylated forms, of which the most prevalent was endo H-resistant, the next was totally endo H-sensitive, and the least was partially endo H-sensitive. In contrast, lipoprotein lipase in cld/cld cells (Mr = 56,000) consisted of a single, totally endo H-sensitive form. Lipoprotein lipase in both groups of cells contained two oligosaccharide chains. Chromatography studies with heparin-Sepharose indicated that at least some of the lipoprotein lipase in cld/cld cells was dimerized. The findings demonstrate that brown adipocytes cultured from cld/cld mice synthesize lipoprotein lipase with two high mannose oligosaccharide chains, but it is inactive and retained in endoplasmic reticulum. Whether the cld mutation affects primarily processing of oligosaccharide chains of lipoprotein lipase in endoplasmic reticulum, transport of the lipase from the reticulum, or some other process, is to be resolved.  相似文献   

15.
Hepatic triglyceride lipase (HTGL) was measured in primary rat hepatocytes maintained for 3 days under three different culture conditions: basal medium, basal medium plus insulin, and basal medium plus insulin and phenobarbital. The activity of HTGL secreted by these cells was measured by treating intact cells with heparin; intracellular enzyme was subsequently measured in cell homogenates. Insulin stimulated intracellular triglyceride lipase activity by 48% and extracellular lipase by 30%. Phenobarbital, an enzyme-inducing drug, caused a further 15% increase in extracellular hepatic triglyceride lipase; whereas, the intracellular activity was reduced. The presence of insulin greatly stimulated the rate of enzyme secretion, and this rate was not notably affected by the presence of phenobarbital. After 3 days in culture, the short term (2-8 h) synthesis and secretion of enzyme from cultures treated with insulin or insulin plus phenobarbital were equally inhibited by cycloheximide. Monensin also inhibited enzyme secretion in both cultures and caused a similar increase in intracellular lipase activities. Insulin did not significantly affect the proportion of intracellular enzyme (17.7% basal vs. 15.8% insulin). On the other hand phenobarbital produced a 20-30% reduction in the proportion of intracellular enzyme (12.5 vs. 17.7% basal or 15.8% insulin). These findings suggest a drug-induced redistribution of triglyceride lipase.  相似文献   

16.
An indirect labelled-second-antibody cellular immunoassay for adipocyte surface lipoprotein lipase was used to assess the changes that occurred during the incubation of cells in the presence and absence of effectors. In the absence of any specific effectors, the amount of immunodetectable lipoprotein lipase present at the surface of adipocytes remained constant throughout the 4 h incubation period at 37 degrees C. Under such conditions total cellular enzyme activity also remained constant, with no activity appearing in the medium. In the presence of heparin, cell-surface immunodetectable lipoprotein lipase increased by up to 20%, whereas in the presence of cycloheximide they decreased by up to 60%. Thus the obvious turnover of enzyme from this cell-surface site was found to be relatively rapid and dependent for its replenishment, at least in part, on protein synthesis. In the presence of insulin alone, a substantial increase in cell-surface lipoprotein lipase protein occurred, only part of which was dependent on protein synthesis. The total cellular activity of lipoprotein lipase was unaffected by the presence of insulin. The insulin-dependent increase in cell-surface enzyme was potentiated somewhat in the presence of dexamethasone, which was not shown to exert any independent effect. Glucagon, adrenaline and theophylline all produced a significant decline in the cell-surface immunodetectable lipoprotein lipase, which in the case examined (adrenaline) was partially additive with regard to the independent effect of cycloheximide. Cell-surface immunodetectable lipoprotein lipase amounts were decreased significantly when cells were incubated in the presence of either colchicine or tunicamycin. The concerted way in which cell-surface lipoprotein lipase altered during the incubations of adipocytes in the presence of effectors suggested that the translocation of enzyme to and from this cellular site was dependent on hormonal action and the integrity of intracellular protein-transport mechanisms.  相似文献   

17.
Rat hepatocytes isolated by collagenase perfusion were cultured for 48-72 h and examined for synthesis and secretion of hepatic triacylglycerol lipase activity. Low levels of enzyme activity found in the culture medium increased with time of incubation, and a 3-10-fold rise was encountered in the presence of optimal concentrations of heparin (5 U/ml). After interruption of enzyme synthesis by cycloheximide, plateauing of enzyme activity in the medium occurred, indicating that addition of heparin may not only stabilize but also enhance hepatic triacylglycerol lipase secretion. Synthesis and secretion of hepatic triacylglycerol lipase was not related to cell density, and enzyme secretion was encountered in subconfluent cultures. Release of enzyme activity into the medium was not sensitive to chlorpromazine, a lysosomal enzyme inhibitor, but was completely inhibited by treatment with tunicamycin, an inhibitor of glycosylation. As release of enzyme activity could be maintained for 12 h in the absence of serum, possible hormonal regulation was sought. Under the present experimental conditions, no modulation of hepatic triacylglycerol lipase was encountered by either gonadal or thyroid hormones. Addition of cyclic AMP to the culture medium resulted in a 30% decrease in enzyme activity. The dependence of hepatic triacylglycerol lipase secretion on the intactness of the Golgi apparatus and on vesicular transport was demonstrated by the treatment with monensin. The present results show that cultured rat hepatocytes provide a good model system by which the regulation of synthesis and secretion of hepatic triacylglycerol lipase can be studied.  相似文献   

18.
The effect of phenobarbital upon the differentiation of two preadipocyte cell lines, 3T3 F442A and 3T3 L-1, was examined by measuring the synthesis and secretion of lipoprotein lipase. Extracellular enzyme was measured by treating intact cells with heparin, and the intracellular enzyme was subsequently assayed in cell homogenates. When confluent cultures of 3T3 F442A cells were treated with insulin, the cells underwent differentiation as indicated by increased activity of lipoprotein lipase within 6 days, followed in turn by increased levels of protein and triglyceride. Addition of phenobarbital with insulin enhanced total lipoprotein lipase, protein, and triglyceride content. The activity of lipoprotein lipase accumulated in the heparin-releasable fraction during differentiation was increased 2- to 3-fold and the intracellular enzyme was enhanced 15- to 20-fold by the addition of phenobarbital. The ability of phenobarbital to modulate differentiation was dependent upon the time of addition. When added early in the postconfluent period, there was a greater increase in lipoprotein lipase activity than when the drug was added at later times. Phenobarbital also stimulated lipoprotein lipase in differentiating 3T3 L-1 cells in the presence of insulin, although lipoprotein lipase activity was moderately enhanced by phenobarbital alone in these cells. These results suggest that phenobarbital may affect the conversion of adipoblasts into preadipocytes and thereby increase the proportion of cells susceptible to the differentiating stimulus.  相似文献   

19.
20.
The regulation of adipose tissue lipoprotein lipase (LPL) by feeding and fasting occurs through post-translational changes in the LPL protein. In addition, LPL activity and secretion are decreased when N-linked glycosylation is inhibited. To better understand the role of oligosaccharide processing in the development of LPL activity and in LPL secretion, primary cultures of rat adipocytes were treated with inhibitors of oligosaccharide processing. LPL catalytic activity from the heparin-releasable fraction of adipocytes was inhibited by more than 70%, with similar decreases in LPL mass, when cells were cultured for 24 h in the presence of either tunicamycin or castanospermine. On the other hand, deoxymannojirimycin (DMJ) and swainsonine had no effect on LPL activity. LPL secretion was examined after pulse-labeling cells with [35S]methionine. The appearance of 35S-labeled LPL in the medium was blocked by treatment of cells with tunicamycin and castanospermine, whereas secretion was not affected by DMJ or swainsonine. To examine the effect of oligosaccharide processing on LPL intracellular degradation, adipocytes were treated with tunicamycin, castanospermine, and DMJ and then pulse-labeled with [35S]methionine, followed by a chase with unlabeled methionine for 120 min. The unglycosylated [35S]LPL that was synthesized in the presence of tunicamycin demonstrated essentially no intracellular degradation. In the presence of castanospermine and DMJ, the half-life of newly synthesized LPL was increased to 81 and 113 min, as compared to 65 min in control cells. Thus, castanospermine-treated adipocytes demonstrated a decrease in LPL activity and secretion, suggesting that the glucosidase-mediated cleavage of terminal glucose residues from oligosaccharides is a critical step in LPL maturation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号