首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Deletion of T cells due to apoptosis induction is a regulatory mechanism in the human immune system that may be impaired in autoimmune diseases such as multiple sclerosis (MS). Involvement of the apoptosis-mediating CD95/CD95 ligand system in MS has been demonstrated. Here, we report that (auto)antigen-specific human T cells are not killed in vitro by soluble TNF-related apoptosis-inducing ligand (TRAIL) although expressing death-inducing receptors, TRAIL receptor 1 (TRAIL-R1) and TRAIL-R2. Apoptosis was assessed by caspase activation and DNA fragmentation, receptor expression was detected by RT - PCR and flow cytometry. The (auto)antigen-specific T cells were also resistant to specific TRAIL-R1/TRAIL-R2-directed induction of apoptosis, indicating that coexpression of the truncated TRAIL-R3 and TRAIL-R4 in these T cells is not responsible for the observed resistance. Upon stimulation, levels of death-inducing TRAIL receptors decreased whereas TRAIL was up-regulated on the cell surface. In contrast to CD95, the role of TRAIL receptors in MS might not involve regulation of T cell vulnerability.  相似文献   

2.
Human TRAIL can efficiently kill tumor cells in vitro and kill human tumor xenografts in mice with little effect on normal mouse cells or tissues. The effects of TRAIL on normal human tissues have not been described. In this study, we report that endothelial cells (EC), isolated from human umbilical veins or human dermal microvessels, express death domain-containing TRAIL-R1 and -R2. Incubation with TRAIL for 15 h causes approximately 30% of cultured EC to die, as assessed by propidium iodide uptake. Death is apoptotic, as assessed by Annexin V staining, 4',6'-diamidino-2-phenylindole staining, and DNA fragment ELISA. EC death is increased by cotreatment with cycloheximide but significantly reduced by caspase inhibitors or transduced dominant-negative Fas-associated death domain protein. In surviving cells, TRAIL activates NF-kappaB, induces expression of E-selectin, ICAM-1, and IL-8, and promotes adhesion of leukocytes. Injection of TRAIL into human skin xenografts promotes focal EC injury accompanied by limited neutrophil infiltration. These data suggest that TRAIL is an inducer of tissue injury in humans, an outcome that may influence antitumor therapy with TRAIL.  相似文献   

3.
The tumor necrosis factor (TNF) related apoptosis-inducing ligand (TRAIL or Apo2L) and its receptors are members of the tumor necrosis factor superfamily. TRAIL triggers apoptosis by binding to its two proapoptotic receptors DR4 and DR5, a process which is negatively regulated by binding of TRAIL to its two decoy receptors TRID and TRUNDD. Here, we show that TRAIL effectively induces apoptosis in H460 human non-small-cell lung carcinoma cells via cleavage of caspases 8, 9, 7, 3, and BID, release of cytochrome c from the mitochondria, and cleavage of poly (ADP-ribose) polymerase (PARP). However, overexpression of Bcl2 blocked TRAIL-induced apoptosis in H460 cells, which correlated with the Bcl2 protein levels. Importantly, the release of cytochrome c and cleavage of caspase 7 triggered by TRAIL were considerably blocked in Bcl2 overexpressing cells as compared to vector control cells. Moreover, inhibition of TRAIL-mediated cytochrome c release and caspase 7 activation by Bcl2 correlated with the inability of PARP to be cleaved and the inability of the Bcl2 transfectants to undergo apoptosis. Thus, these results suggest that Bcl2 can serve an anti-apoptotic function during TRAIL-dependent apoptosis by inhibiting the release of cytochrome c and activation of caspase 7, thereby blocking caspase 7-dependent cleavage of cellular substrates.  相似文献   

4.
Recently, it has been shown that Fas ligand (FasL) interacts with the extracellular matrix (ECM) protein fibronectin (FN), and that the bound FasL retains its cytotoxic efficacy. Herein, we examined the ramifications of FasL-ECM protein interactions throughout a specific time period, in the absence or presence of additional activating molecules, assuming that these complexed interactions occur during inflammation. We found that exposure of purified human T cells to FN-associated recombinant FasL for as brief as 5-10 min at 0.1-100 ng/ml induced their adhesion in beta(1) integrin- and FasR-dependent manners while activating the intracellular protein kinase, Pyk-2. The FN-associated FasL stops the CXCL12 (stromal cell-derived factor 1alpha)-induced chemotaxis of T cells by inhibiting the chemokine-induced extracellular signal-regulated kinase signaling and cytoskeletal rearrangement. This short term exposure of T cells to the FN-bound FasL (1 ng/ml), which was followed by T cell activation via the CD3 complex, resulted in 1) increased secretion of IFN-gamma (measured after 24 h), and 2) enhanced T cell apoptosis (measured after 72 h). Thus, in the context of inflamed ECM and depending on the time after FasL activation, its concentration, and the nature of other contextual mediators, FasL initially retains effector T cells at sites of inflammation and, later, induces T cell apoptosis and return to homeostasis.  相似文献   

5.
Canstatin, a 24-kDa peptide derived from the C-terminal globular non-collagenous (NC1) domain of the alpha2 chain of type IV collagen, was previously shown to induce apoptosis in cultured endothelial cells and to inhibit angiogenesis in vitro and in vivo. In this report, we demonstrate that canstatin inhibits the phosphorylation of Akt, focal adhesion kinase, mammalian target of rapamycin, eukaryotic initiation factor-4E-binding protein-1, and ribosomal S6 kinase in cultured human umbilical vein endothelial cells. It also induces Fas ligand expression, activates procaspases 8 and 9 cleavage, reduces mitochondrial membrane potential, and increases cell death (as determined by propidium iodide staining). Canstatin-induced activation of procaspases 8 and 9 as well as the induced reduction in mitochondrial membrane potential and cell viability were attenuated by the forced expression of FLICE-inhibitory protein. Canstatin-induced procaspase 8 activation and cell death were also inhibited by a neutralizing anti-Fas antibody. Collectively, these data indicate that canstatin-induced apoptosis is associated with phosphatidylinositol 3-kinase/Akt inhibition and is dependent upon signaling events transduced through membrane death receptors.  相似文献   

6.
Park IC  Park MJ  Woo SH  Lee KH  Lee SH  Rhee CH  Hong SI 《Cytokine》2001,15(3):166-170
We examined the role of caspases and serine protease(s) in cell death induced by tumour necrosis factor-related apoptosis-inducing ligand (TRAIL). After incubation of adenocarcinoma cells with TRAIL, caspase-3, -8 were activated and the cleavage of Bid induced the release of cytochrome c, from the mitochondria to the cytosol. Tetrapeptide inhibitors of caspase-1, -2, -3, and -8 suppressed DNA fragmentation and attenuated the release of cytochrome c, whereas inhibitors of caspase-5 did not. Interestingly, the general serine protease(s) inhibitor 4-(2-aminoethyl)benzylsulfonyl fluoride (AEBSF) resulted in the arrest of apoptosis. However, the AEBSF did not prevent the release of mitochondrial cytochrome c during TRAIL-induced apoptosis. From these results, we postulate that serine protease(s) may be involved in post-mitochondrial apoptotic events, that lead to the activation of the initiator, caspase-9.  相似文献   

7.
Lee ST  Wong PF  Cheah SC  Mustafa MR 《PloS one》2011,6(4):e18915

Background

Alpha-tomatine (α-tomatine) is the major saponin in tomato (Lycopersicon esculentum). This study investigates the chemopreventive potential of α-tomatine on androgen-independent human prostatic adenocarcinoma PC-3 cells.

Methodology/Principal Findings

Treatment of highly aggressive human prostate cancer PC-3 cells with α-tomatine resulted in a concentration-dependent inhibition of cell growth with a half-maximal efficient concentration (EC50) value of 1.67±0.3 µM. It is also less cytotoxic to normal human liver WRL-68 cells and normal human prostate RWPE-1 cells. Assessment of real-time growth kinetics by cell impedance-based Real-Time Cell Analyzer (RTCA) showed that α-tomatine exhibited its cytotoxic effects against PC-3 cells as early as an hour after treatment. The inhibitory effect of α-tomatine on PC-3 cancer cell growth was mainly due to induction of apoptosis as evidenced by positive Annexin V staining and decreased in mitochondrial membrane potential but increased in nuclear condensation, polarization of F-actin, cell membrane permeability and cytochrome c expressions. Results also showed that α-tomatine induced activation of caspase-3, -8 and -9, suggesting that both intrinsic and extrinsic apoptosis pathways are involved. Furthermore, nuclear factor-kappa B (NF-κB) nuclear translocation was inhibited, which in turn resulted in significant decreased in NF-κB/p50 and NF-κB/p65 in the nuclear fraction of the treated cells compared to the control untreated cells. These results provide further insights into the molecular mechanism of the anti-proliferative actions of α-tomatine.

Conclusion/Significance

α-tomatine induces apoptosis and inhibits NF-κB activation on prostate cancer cells. These results suggest that α-tomatine may be beneficial for protection against prostate cancer development and progression.  相似文献   

8.
Helicobacter pylori (H. pylori) infection is associated with chronic gastritis, peptic ulcer and gastric cancer. Apoptosis induced by microbial infections is implicated in the pathogenesis of H. pylori infection. Here we show that human gastric epithelial cells sensitized to H. pylori confer susceptibility to TRAIL-mediated apoptosis via modulation of death receptor signaling. Human gastric epithelial cells are intrinsically resistant to TRAIL-mediated apoptosis. The induction of TRAIL sensitivity by H. pylori is dependent on the activation of caspase-8 and its downstream pathway. H. pylori induces caspase-8 activation via enhanced assembly of the TRAIL death-inducing signaling complex (DISC) through downregulation of cellular FLICE-inhibitory protein (FLIP). Overexpression of FLIP abolished the H. pylori-induced TRAIL sensitivity in human gastric epithelial cells. Our study thus demonstrates that H. pylori induces sensitivity to TRAIL apoptosis by regulation of FLIP and assembly of DISC, which initiates caspase activation, resulting in the breakdown of resistance to apoptosis, and provides insight into the pathogenesis of gastric damage in Helicobacter infection. Modulation of host apoptosis signaling by bacterial interaction adds a new dimension to the pathogenesis of Helicobacter.  相似文献   

9.
Hypericin (HYP) is a photosensitizing pigment from Hypericum perforatum that displays cytotoxic effects in neoplastic cell lines. Therefore, HYP is presently under consideration as a new anticancer drug in photodynamic therapy. Here, we investigated the mechanism of action of HYP photo-induced apoptosis of Jurkat cells compared to the cytostatic drug paclitaxel (PXL). Both photoactivated HYP and PXL similarly increased the activity of caspase-8 and caspase-3, and drug-induced apoptosis of Jurkat cells was completely blocked by inhibitors of caspase-8 (Z-IETD-FMK) and caspase-3 (Z-DEVD-FMK). The involvement of death receptors was analyzed using neutralizing monoclonal antibodies against Fas (SM1/23), FasL (NOK-2) and TNF-R1 (MAB225), and a polyclonal rabbit anti-human TNF-related apoptosis-inducing ligand (TRAIL) antiserum. TRAIL antibody blocked TRAIL-induced and HYP photo-induced, but not PXL-induced apoptosis of Jurkat cells. In contrast, PXL-induced, but not HYP-induced apoptosis was blocked by the SM1/23 and NOK-2 antibodies. Anti-TNF-R1 antibody had no effect. These findings suggest that HYP photo-induced apoptosis of Jurkat cells is mediated in part by the TRAIL/TRAIL-receptor system and subsequent activation of upstream caspases.  相似文献   

10.
IL-21 induces apoptosis of antigen-specific CD8+ T lymphocytes   总被引:3,自引:0,他引:3  
IL-21, a member of the common gamma-chain family of cytokines, has pleiotropic effects on T, B, and NK cells. We found that IL-21 and the prototype common gamma-chain cytokine IL-2 can stimulate proliferation and cytokine secretion by Ag-specific rhesus monkey CD8+ T cells. However, unique among the members of this family of cytokines, we found that IL-21 drives these cells to apoptosis by down-regulation of Bcl-2. These findings suggest that IL-21 may play an important role in the contraction of CD8+ T cell responses.  相似文献   

11.
Several laboratories have reported on the apoptotic potentials of human prostate cancer (PC) cell lines in response to crosslinking of Fas (CD95/APO-1) with agonistic anti-Fas antibodies. We have re-evaluated the apoptotic potentials of seven human PC cell lines using the natural Fas ligand (FasL) in place of agonistic antibody. First, PC cell lines were tested in a standard cytotoxicity assay with a transfected cell line that stably expresses human FasL. Next, we developed an adenoviral expression system employing 293 cells that stably express crmA, a poxvirus inhibitor of apoptosis, to analyze the effects of FasL when expressed internally by the PC cell lines. Our data suggest that the apoptotic potentials of these cell lines were greatly underestimated in previous studies utilizing agonistic anti-Fas antibodies. Lastly, adenoviral-mediated expression of FasL prevented growth and induced regression of two human PC cell lines in immunodeficient mice. These preliminary in vivo results suggest a potential use for adenovirus encoding FasL as a gene therapy for PC.  相似文献   

12.
Urothelial carcinoma of the bladder accounts for approximately 5% of all cancer deaths in humans. The large majority of bladder tumors are non-muscle invasive at diagnosis, but even after local surgical therapy there is a high rate of local tumor recurrence and progression. Current treatments extend time to recurrence but do not significantly alter disease survival. The objective of the present study was to investigate the tumoricidal potential of combining the apoptosis-inducing protein TNF-related apoptosis-inducing ligand (TRAIL) with a small molecule inhibitor of apoptosis proteins (IAP) antagonist to interfere with intracellular regulators of apoptosis in human bladder tumor cells. Our results demonstrate that the IAP antagonist Compound A exhibits high binding affinity to the XIAP BIR3 domain. When Compound A was used at nontoxic concentrations in combination with TRAIL, there was a significant increase in the sensitivity of TRAIL-sensitive and TRAIL-resistant bladder tumor lines to TRAIL-mediated apoptosis. In addition, modulation of TRAIL sensitivity in the TRAIL-resistant bladder tumor cell line T24 with Compound A was reciprocated by XIAP small interfering RNA-mediated suppression of XIAP expression, suggesting the importance of XIAP-mediated resistance to TRAIL in these cells. These results suggest the potential of combining Compound A with TRAIL as an alternative therapy for bladder cancer.  相似文献   

13.
Previous studies have shown that activation of NF-kappaB can inhibit apoptosis induced by a number of stimuli. It is also known that TNF-related apoptosis-inducing ligand (TRAIL) can activate NF-kappaB through the death receptors TRAIL-R1 and TRAIL-R2, and decoy receptor TRAIL-R4. In view of these findings, we have investigated the extent to which activation of NF-kappaB may account for the variable responses of melanoma lines to apoptosis induced by TRAIL and other TNF family members. Pretreatment of the melanoma lines with the proteasome inhibitor N-acetyl-L-leucinyl-L-leucinyl-L-norleucinal (LLnL), which is known to inhibit activation of NF-kappaB, was shown to markedly increase apoptosis in 10 of 12 melanoma lines with death receptors for TRAIL. The specificity of results for inhibition of NF-kappaB activation was supported by an increase of TRAIL-induced apoptosis in melanoma cells transfected with a degradation-resistant IkappaBalpha. Furthermore, studies with NF-kappaB reporter constructs revealed that the resistance of melanoma lines to TRAIL-induced apoptosis was correlated to activation of NF-kappaB in response to TRAIL. TRAIL-resistant sublines that were generated by intermittent exposure to TRAIL were shown to have high levels of activated NF-kappaB, and resistance to TRAIL could be reversed by LLnL and by the superrepressor form of IkappaBalpha. Therefore, these results suggest that activation of NF-kappaB by TRAIL plays an important role in resistance of melanoma cells to TRAIL-induced apoptosis and further suggest that inhibitors of NF-kappaB may be useful adjuncts in clinical use of TRAIL against melanoma.  相似文献   

14.
Placental protein 14 induces apoptosis in T cells but not in monocytes   总被引:8,自引:0,他引:8  
Substantial evidence exists in literature to suggest that placental protein 14 (PP14) (recently renamed glycodelin A), exhibits immunosuppressive properties and is an indispensable macromolecule in the maternal system for the establishment, maintenance, and progression of pregnancy. Though there are several reports substantiating the above, the mechanism of its action at the molecular level has not been elucidated as yet. In this paper we provide data that suggest that amniotic fluid PP14 and recombinant PP14 expressed in Pichia pastoris induce apoptosis in human peripheral blood lymphocytes upon activation, independent of monocytes. That PP14 has a direct apoptotic action on T cells but not on monocytes was also demonstrated by utilizing human cell lines. PP14 was shown to induce apoptosis in the human T cell lines, Jurkat and MOLT-4 cells, but not in the human monocytic cell line, U937.  相似文献   

15.
The chicken anaemia virus protein 3 (VP3 or apoptin) induces apoptosis specifically in tumour and transformed cells but not in normal cells. This selective apoptosis is ideal for therapeutic purposes. However, VP3, a heterologous protein, is immunogenic in vivo. Such a drawback limits its clinical usage. To diminish its potential immunogenicity, we modified the sequence of VP3. The VP3 genes functional sequence starts at 33 AA (amino acids) from the N‐terminal side, and the first protein structural domain consists of 30 AA. We found that the first domain of VP3 contains no functional sequences. Therefore, this domain was removed to test whether its absence affects apoptosis. Transfection of EGFP (enhance green fluorescent protein)‐modified‐VP3 or HA‐modified‐VP3 in bladder cancer cell lines (EJ) resulted in its expression, successful localization to the nucleus and efficient induction of apoptosis. Expression of EGFP‐modified‐VP3 or HA‐modified‐VP3 had no influence on mouse fibroblast cells (3T3). The modified VP3 (30–121), like the wild‐type VP3, induced EJ cell apoptosis without affecting 3T3 cells. This study increases our understanding of modified VP3 (30–121) as a possible substitute for the wild‐type VP3, which makes VP3 (30–121) an interesting candidate for the development of novel therapeutic strategies.  相似文献   

16.
Objective: To determine the effects of esculetin, a plant phenolic compound with apoptotic activity in cancer cells, on 3T3‐L1 adipocyte apoptosis and adipogenesis. Research Methods and Procedures: 3T3‐L1 pre‐confluent preadipocytes and lipid‐filled adipocytes were incubated with esculetin (0 to 800 μM) for up to 48 hours. Viability was determined using the Cell Titer 96 Aqueous One Solution cell proliferation assay; apoptosis was quantified by measurement of single‐stranded DNA. Post‐confluent preadipocytes were incubated with esculetin for up to 6 days during maturation. Adipogenesis was quantified by measuring lipid content using Nile Red dye; cells were also stained with Oil Red O for visual confirmation of effects on lipid accumulation. Results: In mature adipocytes, esculetin caused a time‐ and dose‐related increase in adipocyte apoptosis and a decrease in viability. Apoptosis was increased after only 6 hours by 400 and 800 μM esculetin (p < 0.05), and after 48 hours, as little as 50 μM esculetin increased apoptosis (p < 0.05). In preadipocytes, apoptosis was detectable only after 48 hours (p < 0.05) with 200 μM esculetin and higher concentrations. However, results of the cell viability assay indicated a reduction in preadipocyte number in a time‐ and dose‐related manner, beginning as early as 6 hours with 400 and 800 μM esculetin (p < 0.05). Esculetin also inhibited adipogenesis of 3T3‐L1 preadipocytes. Esculetin‐mediated inhibition of adipocyte differentiation occurred during the early, intermediate, and late stages of the differentiation process. In addition, esculetin induced apoptosis during the late stage of differentiation. Discussion: These findings suggest that esculetin can alter fat cell number by direct effects on cell viability, adipogenesis, and apoptosis in 3T3‐L1 cells.  相似文献   

17.
BackgroundThe survival rate and therapeutic options for patients with bladder cancer have improved little in recent decades. Guggulsterone (GS), a phytoestrogen, has been investigated as an anticancer drug in various malignancies.PurposeThe present study aimed to evaluate the anticancer effects of E-isomer and Z-isomer GS in the human bladder cancer cell lines TSGH8301 (low-grade) and T24 (high-grade) and their underlying mechanisms.MethodsThe cell survival effect of GS was investigated by the MTT and colony formation assays in bladder cancer cell lines. Flow cytometry was used to analyze the cell cycle and cell death. Migration ability was measured by wound healing and transwell assays. Protein expression was determined by Western blot after GS treatment. The potency of GS on subcutaneous TSGH8301 bladder tumors was evaluated using an in vivo imaging system.ResultsE-isomer GS reduced the survival rate of both low- and high-grade human bladder cancer cells. GS caused cell cycle arrest, accompanied by the decrease and increase in cyclin A and p21 levels, respectively. Additionally, caspase-dependent apoptosis was observed following GS treatment. Furthermore, GS treatment downregulated mTOR-Akt signaling and induced autophagy with p62 and LC3β-II expression. Moreover, the farnesoid X receptor was involved in GS-inhibited cell growth. In addition, GS reduced the migration ability with a decrease in integrin-focal adhesion kinase and myosin light chain. Interestingly, the suppression of GS-mediated migration was prevented by the lysosomal inhibitor ammonium chloride (NH4Cl). GS also reduced TSGH8301 bladder cancer cell progression by increasing the level of p21, cleaved caspase 3, cleaved poly (ADP-ribose) polymerase (PARP), and LC3β-II in vivo.ConclusionsThe current findings suggest that GS treatment may serve as a potential anticancer therapy for different grades of urothelial carcinoma.  相似文献   

18.
Benzalkonium chloride (BAK) is a cationic detergent with a very slow turnover. Because of its strong antibacterial activities, BAK is widely used especially in dentistry and ophthalmology. It is the most commonly used preservative in topical ophthalmic medications. Due to chronicity and widespread use of such treatments, BAK's side effects are of great importance. BAK toxicity for adherent cells, probably related to its pro-oxidative activities, is time- and dose-dependent. Although lymphocytes often infiltrate superficial eye tissues, the BAK influence on them is yet to be established. The aim of this study was to check BAK cytotoxicity on T lymphocytic Jurkat line cells and to verify the suggestion that BAK can induce G2M cell blocks. A dose- and time-dependent cytotoxic effect of BAK on lymphoid cells in relatively low concentrations was shown in this study. In lower concentrations, it shows a moderate apoptotic and minimal antiproliferative effect on Jurkat cells, while in higher concentrations it shows a rapid necrotic effect. No G2M cell blocks were observed. Our findings could suggest lymphoid dysfunction during intensive, prolonged topical BAK treatment, even at dosages relatively non-toxic to epithelial eye cells.  相似文献   

19.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces programmed cell death through the caspase activation cascade and translocation of cleaved Bid (tBid) by the apical caspase-8 to mitochondria to induce oligomerization of multidomain Bax and Bak. However, the roles of prosurvival Bcl-2 family proteins in TRAIL apoptosis remain elusive. Here we showed that, besides the specific cleavage and activation of Bid by caspase-8 and caspase-3, TRAIL-induced apoptosis in Jurkat T cells required the specific cleavage of Mcl-1 at Asp-127 and Asp-157 by caspase-3, while other prototypic antiapoptotic factors such as Bcl-2 or Bcl-X(L) seemed not to be affected. Mutation at Asp-127 and Asp-157 of Mcl-1 led to cellular resistance to TRAIL-induced apoptosis. In sharp contrast to cycloheximide-induced Mcl-1 dilapidation, TRAIL did not activate proteasomal degradation of Mcl-1 in Jurkat cells. We further established for the first time that the C-terminal domain of Mcl-1 became proapoptotic as a result of caspase-3 cleavage, and its physical interaction and cooperation with tBid, Bak, and voltage-dependent anion-selective channel 1 promoted mitochondrial apoptosis. These results suggested that removal of N-terminal domains of Bid by caspase-8 and Mcl-1 by caspase-3 enabled the maximal mitochondrial perturbation that potentiated TRAIL-induced apoptosis.  相似文献   

20.

Background

Gliomas are commonly malignant tumors that arise in the human central nervous system and have a low overall five-year survival rate. Previous studies reported that several members of Rab GTPase family are involved in the development of glioma, and abnormal expression of Rab small GTPases is known to cause aberrant tumor cell behavior. In this study, we characterized the roles of Rab21 (Rab GTPase 21), a member of Rab GTPase family, in glioma cells.

Methods

The study involved downregulation of Rab21 in two glioma cell lines (T98G and U87) through transfection with specific-siRNA. Experiments using the MTT assay, cell cycle analysis, apoptosis assay, real-time PCR and western blot were performed to establish the expression levels of related genes.

Results

The results show that downregulation of Rab21 can significantly inhibit cell growth and remarkably induce cell apoptosis in T98G and U87 cell lines. Silencing Rab21 resulted in significantly increased expression of apoptosis-related proteins (caspase7, Bim and Bax) in glioma cells.

Conclusions

We inferred that Rab21 silencing can induce apoptosis and inhibit proliferation in human glioma cells, indicating that Rab21 might act as an oncogene and serve as a novel target for glioma therapy.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号