首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
The fact that selfing increases seed set (reproductive assurance) has often been put forward as an important selective force for the evolution of selfing. However, the role of reproductive assurance in hermaphroditic populations is far from being clear because of a lack of theoretical work. Here, I propose a theoretical model that analyzes self-fertilization in the presence of reproductive assurance. Because reproductive assurance directly influences the per capita growth rate, I developed an explicit demographic model for partial selfers in the presence of reproductive assurance, specifically when outcrossing is limited by the possibility of pollen transfer (Allee effect). Mating system parameters are derived as a function of the underlying demographical parameters. The functional link between population demography and mating system parameters (reproductive assurance, selfing rate) can be characterized. The demographic model permits the analysis of the evolution of self-fertilization in stable populations when reproductive assurance occurs. The model reveals some counterintuitive results such as the fact that increasing the fraction of selfed ovules can, in certain circumstances, increase the fraction of outcrossed ovules. Moreover, I demonstrate that reproductive assurance per se cannot account for the evolution of stable mixed selfing rates. Also, the model reveals that the extinction of outcrossing populations depends on small changes in population density (ecological perturbations), while the transition from outcrossing to selfing can, in certain cases, lead the population to extinction (evolutionary suicide). More generally, this paper highlights the fact that self-fertilization affects both the dynamics of individuals and the dynamics of selfing genes in hermaphroditic populations.  相似文献   

2.
1. Larval success was compared when one, two, or three egg clutches were laid in kumquat fruits (≈ 10 ml in volume) either successively on the same day or at the rate of one clutch per day. 2. Increased clutch density was associated with a significant decrease in larval survival rate and non‐significant decreases in larval growth rate and pupal mass. 3. Larval and pupal parameters showed significantly larger variance when clutches were laid on successive days than on the same day, suggesting a competitive advantage for older larvae over younger larvae. 4. The results suggest that, in small fruit, reduced fitness due to larval competition may act against possible fitness benefits due to social facilitation among adult females, hence reducing the likelihood of non‐linear population dynamics caused by processes such as the Allee effect.  相似文献   

3.
    
Calotropis procera (Ait.) R.Br. (Apocynaceae), an invasive woody milkweed, has expanded its range in northern Australia affecting rangeland and pastoral productivity. While self‐compatibility should enhance the species range expansion, spread of C. procera is limited by the availability of larger wasp and bee species that are able to vector its solid pollinia. Pollination efficiency is thus likely dependent on both pollinator abundance and plant density. Calotropis procera flowers year round in Australia but fruiting is limited to the warm months of the year when pollinators are most abundant, indicating that seasonal regulation of reproduction may be due to pollinator limitation. We examine the propositions that C. procera reproduction is regulated by the interaction between plant population density and pollinator pressure and that low pollinator pressure causes low per capita plant fecundity. All pollinators belonged to Order Hymenoptera and pollinator composition was similar at six of the seven sites. Fruit production per plant (fecundity) was lower above and below intermediate densities (350–550 plants ha?1) of flowering plants with evidence of a weak Allee effect at lower plant density. Pollinator visitation rates per plant were low at high and low plant densities, and greatest at intermediate densities, while pollen supplementation experiments showed that C. procera is pollen limited (Pollen Limitation Indexfruit = 0.9) even at intermediate densities. Pollen limitation caused by low pollinator pressure at low plant densities and pollinator satiation at high plant densities may account for these fruit production trends. Management should be conducted in the colder months when pollinator pressure is low and plants are not reproducing. In addition, where stand eradication cannot be achieved in one attempt, management should reduce flowering plants to below intermediate densities where the fecundity per plant is low.  相似文献   

4.
    
Fertilization in angiosperms involves the germination of pollen on the stigma, followed by the extrusion of a pollen tube that elongates through the style and delivers two sperm cells to the embryo sac. Sexual selection could occur throughout this process when male gametophytes compete for fertilization. The strength of sexual selection during pollen competition should be affected by the number of genotypes deposited on the stigma. As increased self-fertilization reduces the number of mating partners, and the genetic diversity and heterozygosity of populations, it should thereby reduce the intensity of sexual selection during pollen competition. Despite the prevalence of mating system shifts, few studies have directly compared the molecular signatures of sexual selection during pollen competition in populations with different mating systems. Here we analyzed whole-genome sequences from natural populations of Arabis alpina, a species showing mating system variation across its distribution, to test whether shifts from cross- to self-fertilization result in molecular signatures consistent with sexual selection on genes involved in pollen competition. We found evidence for efficient purifying selection on genes expressed in vegetative pollen, and overall weaker selection on sperm-expressed genes. This pattern was robust when controlling for gene expression level and specificity. In agreement with the expectation that sexual selection intensifies under cross-fertilization, we found that the efficacy of purifying selection on male gametophyte-expressed genes was significantly stronger in genetically more diverse and outbred populations. Our results show that intra-sexual competition shapes the evolution of pollen-expressed genes, and that its strength fades with increasing self-fertilization rates.  相似文献   

5.
6.
7.
We model the evolution of plant mating systems under the joint effects of pollen discounting and pollen limitation, using a dynamic model of inbreeding depression, allowing for partial purging of recessive lethal mutations by selfing. Stable mixed mating systems occur for a wide range of parameter values with pollen discounting alone. However, when typical levels of pollen limitation are combined with pollen discounting, stable selfing rates are always high but less than 1 (0.9相似文献   

8.
The generally held view that increased self-fertilization should be advantageous in the absence of counteracting selective forces reducing viability or fertility is reexamined. It is pointed out that the models on which this view is based all imply a gain in male (pollen) fertility with increased selfing. Hence, the postulated advantage may equally well be due to increased fertility, a fact which reopens the discussion on the selective significance of differential selfing. A new model for differential self-fertilization is presented which avoids built-in fertility selection by explicitly considering pollen available for self- and for cross-pollination. Plant types are distinguished with respect to their amounts ri of pollen available for self-pollination, and these types are assumed to be identical with respect to their pollen and ovule fertilities. Moreover, the efficiency of cross-pollination is allowed to depend, for example, on population density, thus giving rise to a parameter b called “crossing potential”, while the efficiency of self-pollination is described by a parameter a called “selfing potential”. These parameters may be conceived of as ecological parameters. Increasing ri produces a simultaneous increase in each of the four measures of self-fertilization (introduced in Part I of the present series) irrespective of the values of the ecological parameters. It is then shown that increased selfing can be both advantageous and disadvantageous in terms of fitness, dependig on the ecological parameters as well as on the mode of self-fertilization (i.e. where selfing occurs before or after outcrossing). The main result is, roughly, that for both selfing modes high crossing and low selfing potential favour increased cross-fertilization, while the reverse favours increased self-fertilization. However, the regions for a and b in which this holds true differ substantially for the two selfing modes. In the complements of these regions strange conditions for the evolution of increased selfing or outcrossing, respectively, exist. The significance of these results for explaining experimental observations is discussed.  相似文献   

9.
In flowering plants, pollen limitation has been proposed to intensify selection on floral characters important in pollinator attraction, but may also select for traits that increase seed set through autonomous selfing. Here, a factorial design (+/- pollen addition, +/- pollinator removal) was used to investigate how the pollination environment affects selection on floral morphology via female fitness in a mixed-mating population of the yellow monkeyflower, Mimulus guttatus (Phrymaceae). Female fitness was strongly pollen-limited, with supplementally pollinated plants setting 37% more seeds than open-pollinated individuals. Strong positive selection was found on flower length, weak positive selection on flower width : length ratio and no selection on stigma-anther distance in both open-pollinated and supplementally pollinated treatments. By contrast, flowers with relatively narrow corollas and low stigma-anther distances were favored in the pollinator exclusion treatment. These results provide mixed support for the idea that pollen limitation intensifies selection on floral characters. Despite strong phenotypic selection, natural pollen limitation did not mediate selection on characters associated with either pollinator attraction or self-fertilization. However, the novel pattern of selection on severely pollen-limited plants suggests that reproductive assurance against pollinator loss may have been directly involved in the floral evolution of closely related selfing taxa.  相似文献   

10.
    
  相似文献   

11.
12.
Plants use self‐incompatibility to reject pollen bearing alleles in common at the S‐locus. These systems are classified as gametophytic (GSI) if recognition involves haploid pollen or sporophytic (SSI) if recognition involves diploid paternal genotypes. Dominance in SSI systems reduces the number of S‐alleles, but it has not been clear which system should maintain greater diversity when all else is equal. We simulated finite populations to compare the equilibrium number of S‐alleles in populations with either GSI or a co‐dominant SSI system. When population size was constant, SSI systems maintained more S‐alleles than GSI systems. When populations fluctuated in response to an S‐Allee effect, fewer S‐alleles were observed in SSI systems when S‐allele diversity was low, and SSI populations were vulnerable to extinction over a broader range of parameters. Turnover rates at the S‐locus were also faster in SSI populations experiencing strong S‐Allee effects. Given the variable expectations concerning S‐allele diversity in these systems, we reviewed published estimates of S‐allele diversity. GSI populations have significantly more S‐alleles on average than SSI populations (GSI = 25.70 and SSI = 16.80). Dominance likely contributes to this pattern, although the demographic consequences of the S‐Allee effect may be important in populations with fewer than 10 S‐alleles.  相似文献   

13.
    
The wild progenitors of cultivated rice, Oryza nivara and Oryza rufipogon , provide an experimental system for characterizing the genetic basis of adaptation. The evolution of annual O. nivara from a perennial ancestor resembling its sister species, O. rufipogon , was associated with an ecological shift from persistently wet to seasonally dry habitats. Here we report a quantitative trait locus (QTL) analysis of phenotypic differentiation in life history, mating system, and flowering time between O. nivara and O. rufipogon . The exponential distribution of effect sizes of QTL fits the prediction of a recently proposed population genetic model of adaptation. More than 80% of QTL alleles of O. nivara acted in the same direction of phenotypic evolution, suggesting that they were fixed under directional selection. The loss of photoperiod sensitivity, which might be essential to the survival of the ancestral populations of O. nivara in the new environment, was controlled by QTL of relatively large effect. Mating system evolution from cross- to self-fertilization through the modification of panicle and floral morphology was controlled by QTL of small-to-moderate effect. The lack of segregation of the recessive annual habit in the F2 mapping populations suggested that the evolution of annual from perennial life form had a complex genetic basis. The study captured the genetic architecture for the adaptive origin of O. nivara and provides a foundation for rigorous experimental tests of population genetic theories of adaptation.  相似文献   

14.
15.
  总被引:1,自引:0,他引:1  
The Allee effect is one of the population consequences of sexual reproduction that has received increased attention in recent years. Due to its impact on small population dynamics, it is commonly accepted that Allee effects should render populations more extinction prone. In particular, monogamous species are considered more susceptible to the Allee effect and hence, more extinction prone, than polygamous species. Although this hypothesis has received theoretical support, there is little empirical evidence. In this study, we investigate (1) how variation in tertiary sex ratio affects the presence and intensity of the Allee effect induced by mating system, as well as (2) how this effect contributes to extinction risk. In contrast with previous predictions, we show that all mating systems are likely to experience a strong Allee effect when the operational sex ratio (OSR) is balanced. This strong Allee effect does not imply being exceptionally extinction prone because it is associated with an OSR that result in a relatively small extinction risk. As a consequence, the impact of Allee effects on overall extinction risk is buffered. Moreover, the OSR of natural populations appears to be often male biased, thus making it unlikely that they will suffer from an Allee effect induced by mating system.  相似文献   

16.
Interest in the possibility of sexual selection in plants has focused primarily on competition among pollen donors based on the speed of pollen-tube growth. However, when pollen arrives on stigmas, there is the opportunity for both races for access to ovules (exploitation competition) and interference with the germination and growth of pollen from other donors (interference competition). We considered whether this second form of competition might occur among pollen grains of wild radish in two experiments. In the first, interference likely occurred because the amount of pollen germination was less in mixed-donor than in single-donor pollinations. This result was duplicated in a second experiment, which also showed that interference occurred only when pollen grains from different donors were in direct contact with each other. In addition, in the second experiment, the opportunity for interference affected the frequency of seeds sired by different pollen donors. Because pollen loads are often mixed in nature, interference competition among pollen grains may be important in the ecology and evolution of plant reproduction.  相似文献   

17.
    
Animal taxa that differ in the intensity of sperm competition often differ in sperm production or swimming speed, arguably due to sexual selection on postcopulatory male traits affecting siring success. In plants, closely related self‐ and cross‐pollinated taxa similarly differ in the opportunity for sexual selection among male gametophytes after pollination, so traits such as the proportion of pollen on the stigma that rapidly enters the style and mean pollen tube growth rate (PTGR) are predicted to diverge between them. To date, no studies have tested this prediction in multiple plant populations under uniform conditions. We tested for differences in pollen performance in greenhouse‐raised populations of two Clarkia sister species: the predominantly outcrossing C. unguiculata and the facultatively self‐pollinating C. exilis. Within populations of each taxon, groups of individuals were reciprocally pollinated (n = 1153 pollinations) and their styles examined four hours later. We tested for the effects of species, population, pollen type (self vs. outcross), the number of competing pollen grains, and temperature on pollen performance. Clarkia unguiculata exhibited higher mean PTGR than C. exilis; pollen type had no effect on performance in either taxon. The difference between these species in PTGR is consistent with predictions of sexual selection theory.  相似文献   

18.
焦乐  孙涛  杨薇  邵冬冬 《生态学报》2022,42(2):423-432
Allee效应是指生物个体适应度与种群规模或密度之间呈正向关联的现象,因与植物种群动态和种群灭绝密切相关而受到生态学家的普遍重视。阐释多重胁迫下滨海湿地植物种群响应机制,从保护生物多样性和维持生态系统稳定性层面发展系统性生态修复措施成为相关研究关注的重点。本研究分别从遗传过程、花粉扩散过程和生物互作关系不同层面,总结分析了植物种群Allee效应驱动机制的研究进展。一方面,植物因遗传过程中近交衰退、遗传变异丧失、有害突变累积等遗传结构改变造成繁殖失败而引发Allee效应;另一方面,植物花粉扩散过程和动植物互作关系影响下的花粉限制也通过影响植物种群繁殖力成为驱动Allee效应的关键因素。滨海湿地水盐梯度变异及格局破碎化影响下,植物种群遭受Allee效应的风险需引起关注,维持滨海湿地植物种群适宜分布格局和生物连通过程成为缓解Allee效应的重要手段。结合生理学与化学生态学研究手段和长时间尺度动态监测技术,有助于进一步阐释环境及生物等多重胁迫下Allee效应的非线性驱动机制。  相似文献   

19.
The urban environment was used to study the plant reproductive system in small fragmented populations as well as the potential adaptations of plants to urban conditions. We examined the effect of density on the pollination process and on reproduction in urban populations of the allogamous species Crepis sancta. The habitat is composed of small uncultivated square patches (c. 2 m2) regularly spaced along the pavement in streets of the city of Montpellier, France. Pollinator behaviour (the presence of pollinators, the number of flowers visited and the duration of each visit) and seed set as a function of the number of plants in patches and selfing rates, determined using progeny array analysis, were studied. The propensity for the urban populations to produce seeds by self-fertilization in insect-proof glasshouse was also analysed. We found strong evidence of reduced pollinator activities at low densities, resulting in reduced pollination and a reduction in seed set from 80 to 20% of ovules fertilized (the Allee effect). Progeny array analysis revealed a slight increase (marginally significant) in selfing rates in urban populations compared with large populations. In spite of lower pollinator activity, urban populations did not show a greater ability to self-fertilize compared with rural populations from the nearby countryside.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号