首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nonhemolytic enterotoxin (Nhe) is one of the two three-component enterotoxins which are responsible for diarrheal food poisoning syndrome caused by Bacillus cereus. To facilitate the detection of this toxin, consisting of the subunits NheA, NheB, and NheC, a complete set of high-affinity antibodies against each of the three components was established and characterized. A rabbit antiserum specific for the C-terminal part (15 amino acids) of NheC was produced using a respective synthetic peptide coupled to a protein carrier for immunization. Using purified B. cereus exoprotein preparations as immunogens, one monoclonal antibody against NheA and several antibodies against NheB were obtained. No cross-reactivity with other proteins produced by different strains of B. cereus was observed. Antibodies against the NheB component were able to neutralize the cytotoxic activity (up to 98%) of Nhe. Based on indirect enzyme immunoassays, the antibodies developed in this study were successfully used in the characterization of the enterotoxic activity of several B. cereus strains. For the first time, it could be shown that strains carrying the nhe genes usually express the complete set of the three components, including NheC. However, the amount of toxin produced varies considerably between the different strains.  相似文献   

2.
The nonhemolytic enterotoxin (Nhe) is known as a major pathogenicity factor for the diarrheal type of food poisoning caused by Bacillus cereus. The Nhe complex consists of NheA, NheB and NheC, all of them required to reach maximum cytotoxicity following a specific binding order on cell membranes. Here we show that complexes, formed between NheB and NheC under natural conditions before targeting the host cells, are essential for toxicity in Vero cells. To enable detection of NheC and its interaction with NheB, monoclonal antibodies against NheC were established and characterized. The antibodies allowed detection of recombinant NheC in a sandwich immunoassay at levels below 10 ng ml−1, but no or only minor amounts of NheC were detectable in natural culture supernatants of B. cereus strains. When NheB- and NheC-specific monoclonal antibodies were combined in a sandwich immunoassay, complexes between NheB and NheC could be demonstrated. The level of these complexes was directly correlated with the relative concentrations of NheB and NheC. Toxicity, however, showed a bell-shaped dose-response curve with a plateau at ratios of NheB and NheC between 50:1 and 5:1. Both lower and higher ratios between NheB and NheC strongly reduced cytotoxicity. When the ratio approached an equimolar ratio, complex formation reached its maximum resulting in decreased binding of NheB to Vero cells. These data indicate that a defined level of NheB-NheC complexes as well as a sufficient amount of free NheB is necessary for efficient cell binding and toxicity. Altogether, the results of this study provide evidence that the interaction of NheB and NheC is a balanced process, necessary to induce, but also able to limit the toxic action of Nhe.  相似文献   

3.
Nhe ('nonhaemolytic enterotoxin') is a three-component cytotoxin implicated in the pathogenesis of diarrhoea by Bacillus cereus. Nhe forms pores in pure lipid bilayers, but the function of the individual components (NheA, NheB and NheC) remains unclear. NheB and NheC are structural homologues of ClyA, a pore-forming cytotoxin of Escherichia?coli. The non-ionic detergent dodecyl maltoside (DDM) has been shown to inhibit haemolysis of ClyA. We used DDM as a probe to examine the response of the Nhe proteins to DDM micelles. At its critical micellar concentration (0.2?mM), DDM inhibited propidium uptake by the native Nhe complex in Vero and HT29 cell suspensions. Pre-incubation of NheC with DDM did not inhibit cytotoxicity. NheB exhibited marked changes in 1-anilinonaphthalene-8-sulphonic acid (ANS) fluorescence after pre-exposure to DDM. Pre-incubation of NheB with DDM resulted in large molecular weight complexes as detected by size exclusion chromatography and diffusion through sized dialysis membranes and prevented binding of NheB to Vero cell monolayers. These data support a model in which conformational changes and oligomerization of NheB are prerequisite events in the process of pore formation.  相似文献   

4.
Haemolysin BL (HBL) and non-haemolytic enterotoxin (Nhe), each consisting of three components, represent the major enterotoxins produced by Bacillus cereus. To evaluate the expression of these toxins, a set of 100 B. cereus strains was examined. Molecular biological characterization showed that 42% of the strains harboured the genes for HBL and 99% for Nhe. The production of all Nhe and HBL components were analyzed using specific antibodies and, in culture supernatants, detectable levels of HBL and Nhe were found for 100% of hbl-positive and 96% of nhe-positive strains. The concentrations of the HBL-L(2) and NheB component ranged from 0.02 to 5.6 microg mL(-1) and from 0.03 to 14.2 microg mL(-1), respectively. Comparison of the amount of NheB produced by food poisoning and food/environmental strains revealed that the median value for all food poisoning strains was significantly higher than for the food/environmental isolates. The data presented in this study provide evidence that specific and quantitative determination of the enterotoxins is necessary to evaluate the toxic potential of B. cereus. In particular, the level of Nhe seems to explain most of the cytotoxic activity of B. cereus isolates and may indicate a highly diarrheic potential.  相似文献   

5.
Bacillus cereus is a spore-forming, Gram-positive bacterium commonly associated with outbreaks of food poisoning. It is also known as an opportunistic pathogen causing clinical infections such as bacteremia, meningitis, pneumonia, and gas gangrene-like cutaneous infections, mostly in immunocompromised patients. B. cereus secretes a plethora of toxins of which four are associated with the symptoms of food poisoning. Two of these, the non-hemolytic enterotoxin Nhe and the hemolysin BL (Hbl) toxin, are predicted to be structurally similar and are unique in that they require the combined action of three toxin proteins to induce cell lysis. Despite their dominant role in disease, the molecular mechanism of their toxic function is still poorly understood. We report here that B. cereus strain ATCC 10876 harbors not only genes encoding Nhe, but also two copies of the hbl genes. We identified Hbl as the major secreted toxin responsible for inducing rapid cell lysis both in cultured cells and in an intraperitoneal mouse toxicity model. Antibody neutralization and deletion of Hbl-encoding genes resulted in significant reductions of cytotoxic activity. Microscopy studies with Chinese Hamster Ovary cells furthermore showed that pore formation by both Hbl and Nhe occurs through a stepwise, sequential binding of toxin components to the cell surface and to each other. This begins with binding of Hbl-B or NheC to the eukaryotic membrane, and is followed by the recruitment of Hbl-L1 or NheB, respectively, followed by the corresponding third protein. Lastly, toxin component complementation studies indicate that although Hbl and Nhe can be expressed simultaneously and are predicted to be structurally similar, they are incompatible and cannot complement each other.  相似文献   

6.
A total of five hybridoma cell lines that produced monoclonal antibodies against the components of the hemolysin BL (HBL) enterotoxin complex and sphingomyelinase produced by Bacillus cereus were established and characterized. Monoclonal antibody 2A3 was specific for the B component, antibodies 1A12 and 8B12 were specific for the L(2) component, and antibody 1C2 was specific for the L(1) protein of the HBL enterotoxin complex. No cross-reactivity with other proteins produced by different strains of B. cereus was observed for monoclonal antibodies 2A3, 1A12, and 8B12, whereas antibody 1C2 cross-reacted with an uncharacterized protein of approximately 93 kDa and with a 39-kDa protein, which possibly represents one component of the nonhemolytic enterotoxin complex. Antibody 2A12 finally showed a distinct reactivity with B. cereus sphingomyelinase. The monoclonal antibodies developed in this study were also successfully applied in indirect enzyme immunoassays for the characterization of the enterotoxic activity of B. cereus strains. About 50% of the strains tested were capable of producing the HBL enterotoxin complex, and it could be demonstrated that all strains producing HBL were also highly cytotoxic.  相似文献   

7.
Seventy-four strains of Bacillus thuringiensis thuringiensis representing 24 serovars were examined for the presence of three enterotoxin genes/operons; the non-haemolytic enterotoxin Nhe, the haemolytic enterotoxin hbl and the Bacillus cereus toxin bceT using polymerase chain reaction. The nheBC genes were found in all strains examined, the hblCD genes in 65 of the 74 strains and bceT in 63 strains. There was little consistency of the distribution of enterotoxin loci among strains of the same serovar in serovars that were well represented in our collection. Culture supernatants from all but one strain inhibited protein synthesis in Vero cells, generally with a toxicity equivalent to that seen in strains of B. cereus isolated from incidents of food poisoning. Microbiological Societies.  相似文献   

8.
Bacillus cereus is the causative agent of gastrointestinal diarrhoea. At least three known enterotoxins may be involved in this syndrome: nonhaemolytic (Nhe) enterotoxin, Hbl enterotoxin and cytotoxin K. Two different forms were recently described for cytotoxin K, encoded by cytK-1 and cytK-2 genes. The CytK-1 toxin appeared to carry a high toxicity, but there is currently no method available to rapidly detect and discriminate the B. cereus strains able to produce this CytK-1 form. In this study, a duplex PCR assay was developed and validated on 162 known cytotoxin-containing strains. This PCR method is the first molecular tool to provide rapid detection and discrimination of cytK-1- and cytK-2-carrying B. cereus strains.  相似文献   

9.
Characterization of Bacillus probiotics available for human use   总被引:4,自引:0,他引:4  
Bacillus species (Bacillus cereus, Bacillus clausii, Bacillus pumilus) carried in five commercial probiotic products consisting of bacterial spores were characterized for potential attributes (colonization, immunostimulation, and antimicrobial activity) that could account for their claimed probiotic properties. Three B. cereus strains were shown to persist in the mouse gastrointestinal tract for up to 18 days postadministration, demonstrating that these organisms have some ability to colonize. Spores of one B. cereus strain were extremely sensitive to simulated gastric conditions and simulated intestinal fluids. Spores of all strains were immunogenic when they were given orally to mice, but the B. pumilus strain was found to generate particularly high anti-spore immunoglobulin G titers. Spores of B. pumilus and of a laboratory strain of B. subtilis were found to induce the proinflammatory cytokine interleukin-6 in a cultured macrophage cell line, and in vivo, spores of B. pumilus and B. subtilis induced the proinflammatory cytokine tumor necrosis factor alpha and the Th1 cytokine gamma interferon. The B. pumilus strain and one B. cereus strain (B. cereus var. vietnami) were found to produce a bacteriocin-like activity against other Bacillus species. The results that provided evidence of colonization, immunostimulation, and antimicrobial activity support the hypothesis that the organisms have a potential probiotic effect. However, the three B. cereus strains were also found to produce the Hbl and Nhe enterotoxins, which makes them unsafe for human use.  相似文献   

10.
Among the many potential virulence factors of B. cereus, Haemolysin BL is a unique and potent three component pore forming toxin composed of a binding component, B, and two lytic components, L(1) and L(2). Heterogeneity in nucleic acid and protein sequences of HBL components and problems during expression of L(1) and L(2) proteins in recombinant host due to their toxicity causes problems for development of specific detection systems based on PCR and Immunoassay, respectively. Commercially available kit (BCET RPLA, Oxoid) is useful for detection of L(2) component of HBL, but detection of only one component is insufficient to give comprehensive view on HBL toxin producing strains as some strains produced only one or two of the three HBL components. To address above mentioned problems, in this study, we cloned conserved domains of B, L(1) and L(2) components together as single fusion gene and expressed as recombinant multidomain chimeric protein in E. coli. The resultant protein having L(1), B and L(2) components in the form of single protein had no toxicity towards E. coli as we followed truncated protein approach. The hyperimmune antisera raised in mice against r-chimeric protein reacted with all the three components of HBL toxin of B. cereus (ATCC 14579) and provided three reaction bands at ~40 kDa to ~50 kDa regions during Western blot analysis. The hyperimmune sera of r-chimeric protein also notably neutralized the hemolytic activity of native HBL toxin. These results demonstrated that the obtained chimeric protein is correct and retained the antigenicity of native HBL toxin components. Therefore, it has better application in the development of a comprehensive HBL detection immunoassay and may also be a potential candidate molecule for vaccine studies.  相似文献   

11.
Twenty-six strains of Bacillus cereus from different sources were determined to be either mesophilic or psychrotrophic by growth at 6 and 42 degrees C. The strains were also screened by two polymerase chain reaction (PCR) methods designed to discriminate between mesophilic and psychrotrophic types. Seventeen of the 26 strains were able to grow at 6 degrees C, but only four conformed to the new psychrotolerant species Bacillus weihenstephanensis. Among the 26 strains were two which caused outbreaks of food poisoning in Norway, and three others that were isolated from food suspected of causing illness. The presence of the gene components encoding production of enterotoxins Nhe, Hbl, EntT and a recently described cytotoxin K was determined by PCR. All the strains possessed genes for at least one of these toxins, and 19 of the 26 strains were cytotoxic in a Vero cell assay. We conclude that there are psychrotrophic B. cereus strains which cannot be classified as B. weihenstephanensis, and that intermediate forms between the two species exist. No correlation between cytotoxicity and the growth temperature of the strains was found.  相似文献   

12.
13.
The prevalence of the hemolytic enterotoxin complex HBL was determined in all species of the Bacillus cereus group with the exception of Bacillus anthracis. hblA, encoding the binding subunit B, was detected by PCR and Southern analysis and was confirmed by partial sequencing of 18 strains. The sequences formed two clusters, one including B. cereus and Bacillus thuringiensis strains and the other one consisting of Bacillus mycoides, Bacillus pseudomycoides, and Bacillus weihenstephanensis strains. From eight B. thuringiensis strains, the enterotoxin gene hblA could be amplified. Seven of them also expressed the complete HBL complex as determined with specific antibodies against the L(1), L(2), and B components. Eleven of 16 B. mycoides strains, all 3 B. pseudomyoides strains, 9 of 15 B. weihenstephanensis strains, and 10 of 23 B. cereus strains carried hblA. While HBL was not expressed in the B. pseudomycoides strains, the molecular assays were in accordance with the immunological assays for the majority of the remaining strains. In summary, the hemolytic enterotoxin HBL seems to be broadly distributed among strains of the B. cereus group and relates neither to a certain species nor to a specific environment. The consequences of this finding for food safety considerations need to be evaluated.  相似文献   

14.
Fluorescein-conjugated rabbit antibodies to formalized spores of Bacillus anthracis were tested against strains of B. anthracis and other Bacillus species in a subjective immunofluorescence test. The lack of reaction of B. anthracis Vollum spores with conjugated antibody raised against B. anthracis Sterne spores indicated that spores of the Vollum strain lacked a major surface antigen present in most of the other anthrax strains tested, including the non-encapsulated strains Sterne and the Soviet ST1, variants cured of the pX01 plasmid that codes for the toxin, and several virulent strains. Four other antibody preparations, raised against B, anthracis Vollum, New Hampshire, Ames and Strain 15, reacted to an approximately similar degree with spores of all four strains and of Sterne, indicating that Vollum has at least one spore antigen in common with these other strains. The anti-Sterne and anti-Vollum conjugates both displayed cross-reactions with spores of strains of B. cereus, B. coagulans, B. subtilis, B. megaterium, B. polymyxa, B. pumilus and B. thuringiensis. Absorption of the anti-anthrax conjugates with B. cereus NCTC 8035 and NCTC 10320 removed all these cross-reactions, demonstrating the existence of spore antigens specific for anthrax.  相似文献   

15.
Fluorescein-conjugated rabbit antibodies to formalized spores of Bacillus anthracis were tested against strains of B. anthracis and other Bacillus species in a subjective immunofluorescence test. The lack of reaction of B. anthracis Vollum spores with conjugated antibody raised against B. anthracis Sterne spores indicated that spores of the Vollum strain lacked a major surface antigen present in most of the other anthrax strains tested, including the non-encapsulated strains Sterne and the Soviet ST1, variants cured of the pX01 plasmid that codes for the toxin, and several virulent strains. Four other antibody preparations, raised against B. anthracis Vollum, New Hampshire, Ames and Strain 15, reacted to an approximately similar degree with spores of all four strains and of Sterne, indicating that Vollum has at least one spore antigen in common with these other strains. The anti-Sterne and anti-Vollum conjugates both displayed cross-reactions with spores of strains of B. cereus, B. coagulans, B. subtilis, B. megaterium, B. polymyxa, B. pumilus and B. thuringiensis. Absorption of the anti-anthrax conjugates with B. cereus NCTC 8035 and NCTC 10320 removed all these cross-reactions, demonstrating the existence of spore antigens specific for anthrax.  相似文献   

16.
Little is known about the process whereby the emetic toxin (or cereulide) of Bacillus cereus is produced. Two cereulide-producing strains of B. cereus were cloned and sequenced following polymerase chain reaction (PCR) amplification with primers that were specific for conserved regions of non-ribosomal peptide synthetase (NRPS) genes. The cloned regions of the B. cereus strains were highly homologous to conserved regions of other peptide synthetase nucleotide sequences. Primers were designed for two variable regions of the NRPS gene sequence to ensure specificity for the emetic strains. A total of 86 B. cereus strains of known emetic or non-emetic activity were screened using these primers. All of the emetic strains (n=30) displayed a 188 bp band following amplification and gel electrophoresis. We have developed an improved method of identifying emetic strains of B. cereus and provided evidence that cereulide is produced by peptide synthetases.  相似文献   

17.
对26株蜡状芽胞杆菌群菌株进行了肠毒素基因及其它病原相关因子的检测。PCR结果表明,17株蜡状芽胞杆菌群菌株中含有病原调控因子plcR的同源序列。采用3组溶血肠毒素hbl基因和3组非溶血肠毒素nhe基因特异性引物,分别可从73%的菌株中至少扩增出一个与预期DNA片段大小一致的片段,其中,苏云金芽胞杆菌菌株中溶血素hbl基因和非溶血素nhe基因的阳性检出率为83%。蜡状芽胞杆菌DBt248完全没有溶血活性,而且在溶血素hbl和非溶血素nhe基因的3个亚基以及病原调控因子plcR的PCR检测中均为阴性,有望作为宿主菌用于苏云金芽胞杆菌晶体蛋白的表达和应用。  相似文献   

18.
The Bacillus cereus group represents sporulating soil bacteria containing pathogenic strains which may cause diarrheic or emetic food poisoning outbreaks. Multiple locus sequence typing revealed a presence in natural samples of these bacteria of about 30 clonal complexes. Application of genomic methods to this group was however biased due to the major interest for representatives closely related to Bacillus anthracis. Albeit the most important food-borne pathogens were not yet defined, existing data indicate that they are scattered all over the phylogenetic tree. The preliminary analysis of the sequences of three genomes discussed in this paper narrows down the gaps in our knowledge of the B. cereus group. The strain NVH391-98 is a rare but particularly severe food-borne pathogen. Sequencing revealed that the strain should be a representative of a novel bacterial species, for which the name Bacillus cytotoxis or Bacillus cytotoxicus is proposed. This strain has a reduced genome size compared to other B. cereus group strains. Genome analysis revealed absence of sigma B factor and the presence of genes encoding diarrheic Nhe toxin, not detected earlier. The strain B. cereus F837/76 represents a clonal complex close to that of B. anthracis. Including F837/76, three such B. cereus strains had been sequenced. Alignment of genomes suggests that B. anthracis is their common ancestor. Since such strains often emerge from clinical cases, they merit a special attention. The third strain, KBAB4, is a typical facultative psychrophile generally found in soil. Phylogenic studies show that in nature it is the most active group in terms of gene exchange. Genomic sequence revealed high presence of extra-chromosomal genetic material (about 530kb) that may account for this phenomenon. Genes coding Nhe-like toxin were found on a big plasmid in this strain. This may indicate a potential mechanism of toxicity spread from the psychrophile strain community. The results of this genomic work and ecological compartments of different strains incite to consider a necessity of creating prophylactic vaccines against bacteria closely related to NVH391-98 and F837/76. Presumably developing of such vaccines can be based on the properties of non-pathogenic strains such as KBAB4 or ATCC14579 reported here or earlier. By comparing the protein coding genes of strains being sequenced in this project to others we estimate the shared proteome, or core genome, in the B. cereus group to be 3000+/-200 genes and the total proteome, or pan-genome, to be 20-25,000 genes.  相似文献   

19.
Abstract We developed an improved HEp-2 cell assay method for the detection of Bacillus cereus toxin, which affects the proliferation of HEp-2 cells. The cytostatic toxin was stable upon exposure to heat, pH 2, pH 11 and trypsin, which suggests it is an emetic. Using the HEp-2 cell assay, we examined the distribution and contamination of B. cereus strains that produced an emetic toxin in various foods. Although there were 228 enterotoxin producers among 310 B. cereus strains obtained from foods, 16 of them produced the cytostatic type (emetic toxin). All of the strains that produced the cytostatic toxin were of the H.1 serotype.  相似文献   

20.
Cereulide and valinomycin are highly similar cyclic dodecadepsipeptides with potassium ionophoric properties. Cereulide, produced by members of the Bacillus cereus group, is known mostly as emetic toxin, and no ecological function has been assigned. A comparative analysis of the antimicrobial activity of valinomycin produced by Streptomyces spp. and cereulide was performed at a pH range of pH 5.5 to pH 9.5, under anaerobic and aerobic conditions. Both compounds display pH-dependent activity against selected Gram-positive bacteria, including Staphylococcus aureus, Listeria innocua, Listeria monocytogenes, Bacillus subtilis, and Bacillus cereus ATCC 10987. Notably, B. cereus strain ATCC 14579 and the emetic B. cereus strains F4810/72 and A529 showed reduced sensitivity to both compounds, with the latter two strains displaying full resistance to cereulide. Both compounds showed no activity against the selected Gram-negative bacteria. Antimicrobial activity against Gram-positive bacteria was highest at alkaline pH values, where the membrane potential (ΔΨ) is the main component of the proton motive force (PMF). Furthermore, inhibition of growth was observed in both aerobic and anaerobic conditions. Determination of the ΔΨ, using the membrane potential probe DiOC(2)(3) (in the presence of 50 mM KCl) in combination with flow cytometry, demonstrated for the first time the ability of cereulide to dissipate the ΔΨ in sensitive Gram-positive bacteria. The putative role of cereulide production in the ecology of emetic B. cereus is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号