首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is often claimed that strength training of one limb increases the strength of the contralateral limb, but this has not been demonstrated consistently, particularly in well-controlled studies. The aim was to quantitatively combine the results of other studies on the effects of unilateral training on contralateral strength in humans to provide an answer to this physiological question. We analyzed all randomized controlled studies of voluntary unilateral resistance training that used training intensities of at least 50% of maximal voluntary strength for a minimum of 2 wk. Studies were identified by computerized and hand searches of the literature. Data on changes in strength of contralateral and control limbs were extracted and statistically pooled in a meta-analysis. This approach allows conclusions to be based on a statistically meaningful sample size, which might be difficult to achieve in other ways. Seventeen studies met the inclusion criteria, and 13 provided enough data for statistical pooling. The contralateral effects of strength training reported in individual studies varied from -2.7 to 21.6% of initial strength. The pooled estimate of the effect of unilateral resistance training on the maximal voluntary strength of the contralateral limb was 7.8% (95% confidence interval: 4.1-11.6%). This was 35.1% (95% confidence interval: 20.9-49.3%) of the effect on the trained limb. Pooling of all available data shows that unilateral strength training produces modest increases in contralateral strength.  相似文献   

2.
Six women who had participated in a previous 20-wk strength training study for the lower limb detrained for 30-32 wk and subsequently retrained for 6 wk. Seven untrained women also participated in the 6-wk "retraining" phase. In addition, four women from each group volunteered to continue training an additional 7 wk. The initial 20-wk training program caused an increase in maximal dynamic strength, hypertrophy of all three major fiber types, and a decrease in the percentage of type IIb fibers. Detraining had relatively little effect on fiber cross-sectional area but resulted in an increased percentage of type IIb fibers with a concomitant decrease in IIa fibers. Maximal dynamic strength decreased but not to pretraining levels. Retraining for 6 wk resulted in significant increases in the cross-sectional areas of both fast fiber types (IIa and IIab + IIb) compared with detraining values and a decrease in the percentage of type IIb fibers. The 7-wk extension accentuated these trends such that cross-sectional areas continued to increase (nonsignificant) and no IIb fibers could be found. Similar results were found for the nonpreviously trained women. These data suggest that rapid muscular adaptations occur as a result of strength training in previously trained as well as non-previously trained women. Some adaptations (fiber area and maximal dynamic strength) may be retained for long periods during detraining and may contribute to a rapid return to "competitive" form.  相似文献   

3.
Blood flow in the right and left forearms was determined by venous occlusion plethysmography in ten healthy male subjects before and after training with a hand ergometer. The subjects in group A and B were trained using work loads of 1/3 and 1/2, respectively, of maximum grip strength 6 days/week for 6 weeks. It was found that the blood flow in the left (untrained or contralateral) forearm during exhaustive training of the right hand increased gradually with increasing training periods, and that after 6 weeks of training, grip strength, endurance and peak blood flow of the forearm increased significantly not only in the trained forearm, but also in the untrained forearm. From these results, it is suggested that the increase of blood flow in the contralateral limb after training may, at least in part, be related to the cross transfer effect of muscular endurance.  相似文献   

4.
The purpose of this study was to determine the effect of training of one side of the body on the muscle torques and power output on the trained and untrained side. Seventeen female and twenty-two male students were subject to a four-week knee joint power training regimen on a specially designed stand. The subjects were divided into two groups: a training group (female – N = 11 and male – N = 16) and a control group (female – N = 6 and male – N = 6). Effectiveness of power training on the stand described previously was estimated based on bilateral knee torque and power under static and isokinetic conditions. The experiment lasted for 39 days and was preceded by preliminary studies (pre-training). Control measurements in training groups were made after four weeks of training (post-training) and after the next two weeks (de-training). Power training caused an insignificant increase in force and power in both groups for the untrained leg and a significant increase in RMS EMG. Therefore, the study confirmed the hypothesis that resistance training performed in dynamic conditions can affect the contralateral limb and may also trigger delayed adaptations to training conditions during the detraining phase. Sex differences in adaptation to power training are not clear; however, the differences in gains in contralateral effects between men and women were not confirmed.  相似文献   

5.
It is well known that following skill learning, improvements in motor performance may transfer to the untrained contralateral limb. It is also well known that retention of a newly learned task A can be degraded when learning a competing task B that takes place directly after learning A. Here we investigate if this interference effect can also be observed in the limb contralateral to the trained one. Therefore, five different groups practiced a ballistic finger flexion task followed by an interfering visuomotor accuracy task with the same limb. Performance in the ballistic task was tested before the training, after the training and in an immediate retention test after the practice of the interference task for both the trained and the untrained hand. After training, subjects showed not only significant learning and interference effects for the trained limb but also for the contralateral untrained limb. Importantly, the interference effect in the untrained limb was dependent on the level of skill acquisition in the interfering motor task. These behavioural results of the untrained limb were accompanied by training specific changes in corticospinal excitability, which increased for the hemisphere ipsilateral to the trained hand following ballistic training and decreased during accuracy training of the ipsilateral hand. The results demonstrate that contralateral interference effects may occur, and that interference depends on the level of skill acquisition in the interfering motor task. This finding might be particularly relevant for rehabilitation.  相似文献   

6.
The phenomenon of cross-limb transfer, in which unilateral strength training can result in bilateral strength gains, has recently been tested for ballistic movements. Performance gains associated with repetitive motor practice, and the associated transfer, occur within a few minutes. In this study, young and older adults were trained to perform ballistic abductions of their dominant (right) index finger as quickly as possible. Performance was assessed bilaterally before, during, and after this training. Both groups exhibited large performance gains in the right hand as a result of training (P < 0.001; young 84% improvement, older 70% improvement), which were not significantly different between groups (P = 0.40). Transcranial magnetic stimulation revealed that the performance improvements were accompanied by increases in excitability, together with decreases in intracortical inhibition, of the projections to both the trained muscle and the homologous muscle in the contralateral limb (P < 0.05). The young group also exhibited performance improvements as a result of cross-limb transfer in the left (untrained) hand (P < 0.005), equivalent to 75% of the performance increase in the trained hand. In contrast, there were no significant performance gains in the left hand for the older group (P = 0.23). This was surprising given that the older group exhibited a significantly greater degree of mirror activity than the young group (P < 0.01) in the left first dorsal interosseus muscle (FDI) during right hand movements. Our findings suggest that older adults exhibit a reduced capacity for cross-limb transfer, which may have implications for motor rehabilitation programs after stroke.  相似文献   

7.
The purpose of this study was to determine the effects of resistance training in combination with a leucine and whey protein supplement or a carbohydrate placebo on strength and muscle cross-sectional area (CSA). Thirty-three men (mean age +/- SD = 22.4 +/- 2.4 years) were assigned to 1 of 3 groups: (1) supplementation group (SUPP), (2) placebo group (PL), or (3) control group (CON). The SUPP and PL performed unilateral training of the leg extensor muscles with the nondominant limb for 8 weeks. The strength of each limb, muscle CSA of the quadriceps femoris (QF), and body composition were assessed pretraining and posttraining. The results indicated significant increases in strength for both limbs in the SUPP but only the trained limb in the PL. The increase in strength for the trained limb of the SUPP was greater than that for the trained limb of the PL. There was no significant increase in strength for either limb in the CON. There were significant increases in the CSA of all muscles of the QF of the trained limb for the SUPP and PL, and of the vastus lateralis of the untrained limb for the SUPP. The increases in QF CSA did not differ between the SUPP and PL. No significant CSA changes were found for either limb in the CON. There were no significant changes in body composition for the SUPP, PL, or CON. The current findings suggest that leucine and whey protein supplementation may provide an ergogenic effect which enhances the acquisition of strength beyond that achieved with resistance training and a carbohydrate placebo.  相似文献   

8.
The aim of the study was to estimate efficiency of the strength training protocol designed to improve maximal voluntary contraction without development of muscle hypertrophy. The principal difference between chosen training protocol and classical strength training was that the number of training movements during training session was increased to improve the motor skill, and rest periods between the training movements were increased as well to minimize damage of muscle fibers, which is one of the factors inducing muscle hypertrophy. Knee extensors of right leg in 11 physically active males were trained 4 times a week for 4 weeks. Evaluation of force-velocity characteristics with simultaneous recording of EMG-activity was performed in both trained and untrained legs immediately before, during and several times after the 4 wks training period. Before and after training the size and contractile properties ofipsi- and contralateral knee extensors were evaluated by MRI and twitch interpolation technique. Maximum strength gains after 4 week of training were about 17% in both trained and untrained legs and did not differ significantly from each other. A noticeable increase of EMG-activity during contraction was also found for both legs after 4-wks training period. The observed changes were not accompanied by any significant changes of muscle size, demonstrating the "neural" nature of the training effects.  相似文献   

9.
The purpose of this investigation was to study the effect of one-legged exercise on the strength, power and endurance of the contralateral leg. The performance of the knee extensor and flexor muscle of 20 healthy young adults (10 men and 10 women) was first tested by Cybex II+ and 340 dynamometers. Then 10 subjects were chosen at random to train using one leg three times a week for 7 weeks whilst the other 10 served as controls. During the 8th week, the tests were repeated. Both quadriceps and hamstring muscles of the trained subjects showed a cross-transfer effect from the trained limb to the untrained side. This concerned the strength and power, as well as endurance characteristics of these muscles. The average change in peak torque of the quadriceps muscle was +19% (P less than 0.001) in the trained limb, +11% (P less than 0.01) in the untrained limb and 0% in the control limbs. In hamstring muscles the changes were +14% (P less than 0.01), +5% and -1%, respectively. Concerning muscle endurance (work performed during the last 5 contractions in the 25-repetition test) the corresponding changes were +15% (P less than 0.01), +7% (P less than 0.01), and -1% in quadriceps muscle, and +17% (P less than 0.05), +7%, and -3% in hamstring muscles. The average strength benefit in the untrained limb was +36% (hamstring muscles) and +58% (quadriceps muscle) of that achieved in the trained limb. Untrained hamstring muscle showed better benefits in the endurance parameters than in strength or power parameters, while in the quadriceps muscle this effect was reversed. A positive relationship was observed between the changes (greater improvement in the trained limb resulted in greater improvement in the untrained limb) (hamstring muscles: r = 0.83, P less than 0.001, quadriceps muscle: r = 0.53, P less than 0.001). In endurance parameters, this relationship was almost linear while in the strength and power parameters the results were more in favour of a curvilinear relationship with limited benefit.  相似文献   

10.
The purpose of this investigation was to examine the effects of unilateral, isometric training of the forearm flexors on strength and the mechanomyographic (MMG) and electromyographic (EMG) responses of the biceps brachii in the trained and untrained limb at three joint angles. Seventeen adult females (mean age +/- SD = 21 +/- 2 years) were randomly assigned to a control (CTL; N=7) or a training (TRN; N=10) group. The TRN group performed isometric training of the non-dominant forearm flexors on a Cybex II Dynamometer at a joint angle such that the Cybex lever arm was positioned 60 degrees above the horizontal plane. The training consisted of 3 to 5 sets of 8, 6-second repetitions at 80% of maximal voluntary contraction 3 times per week for 8 weeks. The results indicated a significant increase in flexed arm circumference as well as isometric strength in the trained limb at all three joint angles. There were, however, no changes in MMG or EMG amplitude in the trained or untrained limb and no cross-training effect for strength or flexed arm circumference. These findings suggested that the increased strength may have been due to factors associated with hypertrophy, independent of neural adaptations in the biceps brachii. Furthermore, hypertrophy may have had counteractive effects on the MMG signal that could be responsible for the lack of a training-induced change in the MMG amplitude.  相似文献   

11.
The 5'-AMP-activated protein kinase (AMPK) is proposed to be involved in signaling pathways leading to adaptations in skeletal muscle in response to both a single exercise bout and exercise training. This study investigated the effect of endurance training on protein content of catalytic (alpha1, alpha2) and regulatory (beta1, beta2 and gamma1, gamma2, gamma3) subunit isoforms of AMPK as well as on basal AMPK activity in human skeletal muscle. Eight healthy young men performed supervised one-legged knee extensor endurance training for 3 wk. Muscle biopsies were obtained before and 15 h after training in both legs. In response to training the protein content of alpha1, beta2 and gamma1 increased in the trained leg by 41, 34, and 26%, respectively (alpha1 and beta2 P < 0.005, gamma1 P < 0.05). In contrast, the protein content of the regulatory gamma3-isoform decreased by 62% in the trained leg (P = 0.01), whereas no effect of training was seen for alpha2, beta1, and gamma2. AMPK activity associated with the alpha1- and the alpha2-isoforms increased in the trained leg by 94 and 49%, respectively (both P < 0.005). In agreement with these observations, phosphorylation of alpha-AMPK-(Thr172) and of the AMPK target acetyl-CoA carboxylase-beta(Ser221) increased by 74 and 180%, respectively (both P < 0.001). Essentially similar results were obtained in four additional subjects studied 55 h after training. This study demonstrates that protein content and basal AMPK activity in human skeletal muscle are highly susceptible to endurance exercise training. Except for the increase in gamma1 protein, all observed adaptations to training could be ascribed to local contraction-induced mechanisms, since they did not occur in the contralateral untrained muscle.  相似文献   

12.
Lengthening (eccentric) muscle contractions are characterized by several unusual properties that may result in unique skeletal muscle adaptations. In particular, high forces are produced with very little energy demand. Eccentrically trained muscles gain strength, but the specific nature of fiber size and composition is poorly known. This study assesses the structural and functional changes that occur to normal locomotor muscle after chronic eccentric ergometry at training intensities, measured as oxygen uptake, that do not influence the muscle when exercised concentrically. Male subjects trained on either eccentric or concentric cycle ergometers for 8 wk at a training intensity starting at 54% and ending at 65% of their peak heart rates. The isometric leg strength increased significantly in the eccentrically trained group by 36%, as did the cross-sectional area of the muscle fiber by 52%, but the muscle ultrastructure remained unchanged. There were no changes in either fiber size, composition, or isometric strength in the concentrically trained group. The responses of muscle to eccentric training appear to be similar to resistance training.  相似文献   

13.
The purpose of this study was to examine the effects of a 5-wk unilateral, isometric strength-training program on plasticity in the spinal Hoffmann (H-) reflex in both the trained and untrained legs. Sixteen participants, 22-42 yr old, were assigned to either a control (n = 6) or an exercise group (n = 10). Both groups were tested for plantar flexion maximal voluntary isometric contractions (MVIC) and soleus H-reflex amplitude in both limbs, at the beginning and at the end of a 5-wk interval. Participants in the exercise group showed significantly increased MVIC in both legs after training (P < 0.05), whereas strength was unchanged in the control group for either leg. Subjects in the exercise group displayed increased (P < 0.05) H-reflex amplitudes on the ascending limb of the recruitment curve (at an equivalent M wave of 5% of the maximal M wave, H(A)) only in the trained leg. Maximal H-reflex and M-wave remained unchanged with training. Increased amplitude of H(A) in the trained limb concurrent with increased strength suggests that spinal mechanisms may underlie the changes in strength, possibly because of increased alpha-motoneuronal excitability or reduced presynaptic inhibition. Despite a similar increase in strength in the contralateral limb of the exercise group, H(A) amplitude was unchanged. We conclude that the cross-education effect of strength training may be due to supraspinal to a greater extent than spinal mechanisms.  相似文献   

14.
Muscle hypertrophy is the product of increased drive through protein synthetic pathways and the incorporation of newly divided satellite cells. Gains in muscle mass and strength can be achieved through exercise regimens that include resistance training. Increased insulin-like growth factor-I (IGF-I) can also promote hypertrophy through increased protein synthesis and satellite cell proliferation. However, it is not known whether the combined effect of IGF-I and resistance training results in an additive hypertrophic response. Therefore, rats in which viral administration of IGF-I was directed to one limb were subjected to ladder climbing to test the interaction of each intervention on muscle mass and strength. After 8 wk of resistance training, a 23.3% increase in muscle mass and a 14.4% increase in peak tetanic tension (P(o)) were observed in the flexor hallucis longus (FHL). Viral expression of IGF-I without resistance training produced a 14.8% increase in mass and a 16.6% increase in P(o) in the FHL. The combined interventions produced a 31.8% increase in muscle mass and a 28.3% increase in P(o) in the FHL. Therefore, the combination of resistance training and overexpression of IGF-I induced greater hypertrophy than either treatment alone. The effect of increased IGF-I expression on the loss of muscle mass associated with detraining was also addressed. FHL muscles treated with IGF-I lost only 4.8% after detraining, whereas the untreated FHL lost 8.3% muscle mass. These results suggest that a combination of resistance training and overexpression of IGF-I could be an effective measure for attenuating the loss of training-induced adaptations.  相似文献   

15.
16.
The purposes of this study were to 1) determine the effect of concentric isokinetic training on strength and cross-sectional area (CSA) of selected extensor and flexor muscles of the forearm and leg, 2) examine the potential for preferential hypertrophy of individual muscles within a muscle group, 3) identify the location (proximal, middle, or distal level) of hypertrophy within an individual muscle, and 4) determine the effect of unilateral concentric isokinetic training on strength and hypertrophy of the contralateral limbs. Thirteen untrained male college students [mean age 25.1 +/- 6.1 (SD) yr] volunteered to perform six sets of 10 repetitions of extension and flexion of the nondominant limbs three times per week for 8 wk, using a Cybex II isokinetic dynamometer. Pretraining and posttraining peak torque and muscle CSA measurements for both the dominant and nondominant limbs were determined utilizing a Cybex II isokinetic dynamometer and magnetic resonance imaging scanner, respectively. The results indicated significant (P less than 0.0008) hypertrophy in all trained muscle groups as well as preferential hypertrophy of individual muscles and at specific levels. None of the muscles of the contralateral limbs increased significantly in CSA. In addition, significant (P less than 0.0008) increases in peak torque occurred for trained forearm extension and flexion as well as trained leg flexion. There were no significant increases in peak torque, however, for trained leg extension or for any movement in the contralateral limbs. These data suggest that concentric isokinetic training results in significant strength and hypertrophic responses in the trained limbs.  相似文献   

17.
Five healthy men carried out a program of head-down bed rest (BR) for 20 days. Before and after BR, a series of cross-sectional scans of the thigh were performed using magnetic resonance imaging, from which volumes of the quadriceps muscles were determined and physiological cross-sectional areas (PCSA) were calculated. Muscle thickness and pennation angles of the triceps brachii, vastus lateralis, and triceps surae muscles were also determined by ultrasonography. During BR, subjects performed unilateral isokinetic knee extension exercises every day. The contralateral limb served as a control. Decrease in PCSA after BR was greater in the control (-10.2 +/- 6.3%) than in the trained limb (-5.2 +/- 4.2%). Among the quadriceps, vastus intermedius in the control limb was predominantly atrophied by BR with respect to the volume and PCSA, and the rectus femoris showed the greatest training effect and retained its size in the trained limb. Decreases in muscle thicknesses in leg muscles were not prevented by the present exercise protocol, suggesting a need for specific exercise training for these muscles. Neither trained nor control muscles showed significant changes in pennation angles in any muscles after BR, suggesting that muscle architecture does not change remarkably by muscle atrophy by up to 10%.  相似文献   

18.
The purpose of this article was to review a series of studies (n = 18) where muscle activation in the free barbell back squat was measured and discussed. The loaded barbell squat is widely used and central to many strength training programs. It is a functional and safe exercise that is obviously transferable to many movements in sports and life. Hence, a large and growing body of research has been published on various aspects of the squat. Training studies have measured the impact of barbell squat loading schemes on selected training adaptations including maximal strength and power changes in the squat. Squat exercise training adaptations and their impact on a variety of performance parameters, in particular countermovement jump, acceleration, and running speed, have also been reported. Furthermore, studies have reported on the muscle activation of the lower limb resulting from variations of squat depth, foot placement, training status, and training intensity. There have also been studies on the impact of squatting with or without a weight belt on trunk muscle activation (TMA). More recently, studies have reported on the effect of instability on TMA and squat performance. Research has also shown that muscle activation of the prime movers in the squat exercise increases with an increase in the external load. Also common variations such as stance width, hip rotation, and front squat do not significantly affect muscle activation. However, despite many studies, this information has not been consolidated, resulting in a lack of consensus about how the information can be applied. Therefore, the purpose of this review was to examine studies that reported muscle activation measured by electromyography in the free barbell back squat with the goal of clarifying the understanding of how the exercise can be applied.  相似文献   

19.
Exercise training induces muscular adaptations that are highly specific to the type of exercise. For a systematic study of the differentiated exercise adaptations on a molecular level mouse models have been used successfully. The aim of the current study was to develop a suitable mouse model of isometric strength exercise training characterized by specific adaptations known from strength training. C57BL/6 mice performed an isometric strength training (ST) for 10 weeks 5 days/week. Additionally, either a sedentary control group (CT) or a regular endurance training group (ET) groups were used as controls. Performance capacity was determined by maximum holding time (MHT) and treadmill spirometry, respectively. Furthermore, muscle fiber types and diameter, muscular concentration of phosphofructokinase 1 (PFK), succinate dehydrogenase (SDHa), and glucose transporter type 4 (GLUT4) were determined. In a further approach, the effect of ST on glucose intolerance was tested in diabetic mice. In mice of the ST group we observed an increase of MHT in isometric strength tests, a type II fiber hypertrophy, and an increased GLUT4 protein content in the membrane fraction. In contrast, in mice of the ET group an increase of VO2max, a shift to oxidative muscle fiber type and an increase of oxidative enzyme content was measured. Furthermore strength training was effective in reducing glucose intolerance in mice fed a high fat diet. An effective murine strength training model was developed and evaluated, which revealed marked differences in adaptations known from endurance training. This approach seems also suitable to test for therapeutical effects of strength training.  相似文献   

20.
Recent research on bilateral transfer suggests that imagery training can facilitate the transfer of motor skill from a trained limb to that of an untrained limb above and beyond that of physical practice. To further explore this effect, the present study examined the influence of practice duration and task difficulty on the extent to which imagery training and physical training influences bilateral transfer of a sequential key pressing task. In experiment 1, participants trained on the key pressing task using their non-dominant arm under one of three conditions (physical practice, imagery practice, and no practice). In a subsequent bilateral transfer test, participants performed the sequential task using their untrained dominant arm in either an original order or mirror-ordered sequence. In experiment 2, the same procedures were followed as in experiment 1 except that participants trained with their dominant arm and performed the bilateral transfer task with their non-dominant arm. Results indicated that with extended practice beyond what has been employed in previous studies, physical practice is more effective at facilitating bilateral transfer compared to training with imagery. Interestingly, significant bilateral transfer was only observed for transfer from the non-dominant to the dominant arm with no differences observed between performing the task in an original or mirror ordered sequence. Overall, these findings suggest that imagery training may benefit bilateral transfer primarily at the initial stages of learning, but with extended training, physical practice leads to larger influences on transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号