首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nemaline myopathy (NM) is a clinically and genetically heterogeneous disorder characterized by muscle weakness and the presence of nemaline bodies (rods) in skeletal muscle. Disease-causing mutations have been reported in five genes, each encoding a protein component of the sarcomeric thin filament. Recently, we identified mutations in the muscle alpha-skeletal-actin gene (ACTA1) in a subset of patients with NM. In the present study, we evaluated a new series of 35 patients with NM. We identified five novel missense mutations in ACTA1, which suggested that mutations in muscle alpha-skeletal actin account for the disease in approximately 15% of patients with NM. The mutations appeared de novo and represent new dominant mutations. One proband subsequently had two affected children, a result consistent with autosomal dominant transmission. The seven patients exhibited marked clinical variability, ranging from severe congenital-onset weakness, with death from respiratory failure during the 1st year of life, to a mild childhood-onset myopathy, with survival into adulthood. There was marked variation in both age at onset and clinical severity in the three affected members of one family. Common pathological features included abnormal fiber type differentiation, glycogen accumulation, myofibrillar disruption, and "whorling" of actin thin filaments. The percentage of fibers with rods did not correlate with clinical severity; however, the severe, lethal phenotype was associated with both severe, generalized disorganization of sarcomeric structure and abnormal localization of sarcomeric actin. The marked variability, in clinical phenotype, among patients with different mutations in ACTA1 suggests that both the site of the mutation and the nature of the amino acid change have differential effects on thin-filament formation and protein-protein interactions. The intrafamilial variability suggests that alpha-actin genotype is not the sole determinant of phenotype.  相似文献   

2.
D15S63 is one of the loci, on chromosome 15q11-q13, that exhibit parent-of-origin dependent methylation and that is commonly used in the diagnosis of Prader-Willi or Angelman syndromes (PWS/AS). A 28-kb deletion spanning the D15S63 locus was identified in five unrelated patients; in each of them the deletion was inherited from a normal parent. Three of the five families segregating the deletion were reported to be of Jewish Ashkenazi ancestry, and in the other two families the ancestral origin was unknown. To determine whether the 28-kb deletion is a benign variant, we screened for the deletion in 137 unselected Ashkenazi individuals and in 268 patients who were referred for molecular diagnosis of PWS/AS, of whom 89 were Ashkenazi and 47 were of mixed origin (Ashkenazi and non-Ashkenazi Jews). In the control group, three individuals were carriers of the deletion; among the patients, three were carriers, all of whom were Ashkenazi Jews. There was no significant difference between the control group and the Ashkenazi patients, indicating that the deletion is not a cause of PWS- and AS-like syndromes. The frequency of the 28-kb deletion in the Ashkenazi population was 1/75. Since methylation analysis at the D15S63 locus may lead to misdiagnosis, we suggest the use of SNRPN, either in a PCR-based assay or as a probe in Southern hybridization, as the method of choice in the diagnosis of PWS/AS.  相似文献   

3.
Gaucher disease: gene frequencies in the Ashkenazi Jewish population.   总被引:7,自引:1,他引:6  
DNA from over 2,000 Ashkenazi Jewish subjects has been examined for the four most common Jewish Gaucher disease mutations, which collectively account for about 96% of the disease-producing alleles in Jewish patients. This population survey has made possible the estimation of gene frequencies for these alleles. Eighty-seven of 1,528 individuals were heterozygous for the 1226G (N370S) mutation, and four presumably well persons were homozygous for this mutation. The gene frequency for the 1226G allele was calculated to be .0311, and when these data were pooled with those obtained previously from another 593 Jewish subjects, a gene frequency of .032 with a standard error of .004 was found. Among 2,305 normal subjects, 10 were found to be heterozygous for the 84GG allele, giving a gene frequency of .00217 with a standard error of .00096. No examples of the IVS2(+1) mutation were found among 1,256 samples screened, and no 1448C (L444P) mutations were found among 1,528 samples examined. Examination of the distribution of Gaucher disease gene frequencies in the general population shows that the ratio of 1226G mutations to 84GG mutations is higher than that in the patient population. This is presumed to be due to the fact that homozygotes for the 1226G mutation often have late-onset disease or no significant clinical manifestations at all. To bring the gene frequency in the patient population into conformity with the gene frequency in the general population, nearly two-thirds of persons with a Gaucher disease genotype would be missing from the patient population, presumably because their clinical manifestations were very mild.  相似文献   

4.
5.
Type 2 diabetes susceptibility loci in the Ashkenazi Jewish population   总被引:1,自引:0,他引:1  
Until last year, type 2 diabetes (T2D) susceptibility loci have hardly been identified, despite great effort. Recently, however, several whole-genome association (WGA) studies jointly uncovered 10 robustly replicated loci. Here, we examine these loci in the Ashkenazi Jewish (AJ) population in a sample of 1,131 cases versus 1,147 controls. Genetic predisposition to T2D in the AJ population was found similar to that established in the previous studies. One SNP, rs7754840 in the CDKAL1 gene, presented a significantly stronger effect in the AJ population as compared to the general Caucasian population. This may possibly be due to the increased homogeneity of the AJ population. The use of the SNPs considered in this study, to identify individuals at high (or low) risk to develop T2D, was found of limited value. Our study, however, strongly supports the robustness of WGA studies for the identification of genes affecting complex traits in general and T2D in particular.  相似文献   

6.
Phosphofructokinase (PFK) catalyzes the rate-limiting step of glycolysis. Deficiency of the muscle enzyme is manifested by exercise intolerance and a compensated hemolytic anemia. Case reports of this autosomal recessive disease suggest a predominance in Ashkenazi Jews in the United States. We have explored the genetic basis for this illness in nine affected families and surveyed the normal Ashkenazi population for the mutations we have found. Genomic DNA was amplified using PCR, and denaturing gradient-gel electrophoresis was used to localize exons with possible mutations. The polymorphic exons were sequenced or digested with restriction enzymes. A previously described splicing mutation, delta 5, accounted for 11 (61%) of 18 abnormal alleles in the nine families. A single base deletion leading to a frameshift mutation in exon 22 (delta C-22) was found in six of seven alleles. A third mutation, resulting in a nonconservative amino acid substitution in exon 4, accounted for the remaining allele. Thus, three mutations could account for all illness in this group, and two mutations could account for 17 of 18 alleles. In screening 250 normal Ashkenazi individuals for all three mutations, we found only one delta 5 allele. Clinical data revealed no correlation between the particular mutations and symptoms, but male patients were more symptomatic than females, and only males had frank hemolysis and hyperuricemia. Because PFK deficiency in Ashkenazi Jews is caused by a limited number of mutations, screening genomic DNA from peripheral blood for the described mutations in this population should enable rapid diagnosis without muscle biopsy.  相似文献   

7.
Nemaline myopathy (NM) is a congenital myopathy characterized by muscle weakness and nemaline bodies in affected myofibers. Five NM genes, all encoding components of the sarcomeric thin filament, are known. We report identification of a sixth gene, CFL2, encoding the actin-binding protein muscle cofilin-2, which is mutated in two siblings with congenital myopathy. The proband’s muscle contained characteristic nemaline bodies, as well as occasional fibers with minicores, concentric laminated bodies, and areas of F-actin accumulation. Her affected sister’s muscle was reported to exhibit nonspecific myopathic changes. Cofilin-2 levels were significantly lower in the proband’s muscle, and the mutant protein was less soluble when expressed in Escherichia coli, suggesting that deficiency of cofilin-2 may result in reduced depolymerization of actin filaments, causing their accumulation in nemaline bodies, minicores, and, possibly, concentric laminated bodies.  相似文献   

8.
Mutations in the MCOLN1 gene cause mucolipidosis type IV (MLIV), a severely debilitating, autosomal recessive, lysosomal storage disorder. Approximately 80% of patients with MLIV are of Ashkenazi Jewish (AJ) descent, and two mutations, IVS3-2A-->G and 511del6434, account for >95% of the mutant alleles in this population. To determine the carrier frequencies of these two mutations, 2,029 anonymous, unrelated, unaffected AJ individuals from the greater New York metropolitan area were screened. A multiplex PCR method coupled with allele-specific oligonucleotide hybridization was developed, to enable large-scale screening. The frequencies of the IVS3-2A-->G and 511del6434 mutations were 0.54% and 0.25%, respectively, for a combined carrier frequency of 0.79%, or 1 in 127 individuals (95% CI 0.40%-1.17%). The addition of both AJ mutations causing this neurodegenerative disorder should be considered for prenatal carrier screening in this population.  相似文献   

9.

Background

Relatively small, reproductively isolated populations with reduced genetic diversity may have advantages for genomewide association mapping in disease genetics. The Ashkenazi Jewish population represents a unique population for study based on its recent (< 1,000 year) history of a limited number of founders, population bottlenecks and tradition of marriage within the community. We genotyped more than 1,300 Ashkenazi Jewish healthy volunteers from the Hebrew University Genetic Resource with the Illumina HumanOmni1-Quad platform. Comparison of the genotyping data with that of neighboring European and Asian populations enabled the Ashkenazi Jewish-specific component of the variance to be characterized with respect to disease-relevant alleles and pathways.

Results

Using clustering, principal components, and pairwise genetic distance as converging approaches, we identified an Ashkenazi Jewish-specific genetic signature that differentiated these subjects from both European and Middle Eastern samples. Most notably, gene ontology analysis of the Ashkenazi Jewish genetic signature revealed an enrichment of genes functioning in transepithelial chloride transport, such as CFTR, and in equilibrioception, potentially shedding light on cystic fibrosis, Usher syndrome and other diseases over-represented in the Ashkenazi Jewish population. Results also impact risk profiles for autoimmune and metabolic disorders in this population. Finally, residual intra-Ashkenazi population structure was minimal, primarily determined by class 1 MHC alleles, and not related to host country of origin.

Conclusions

The Ashkenazi Jewish population is of potential utility in disease-mapping studies due to its relative homogeneity and distinct genomic signature. Results suggest that Ashkenazi-associated disease genes may be components of population-specific genomic differences in key functional pathways.  相似文献   

10.
Susceptibility to inflammatory bowel disease (IBD) has a strong genetic component. The vitamin D receptor (VDR) gene maps to a region on chromosome 12 shown to be associated with IBD in some studies. In this case-control study we determined the association between the BsmI VDR gene polymorphism and IBD in patients with Crohn's disease (CD) and ulcerative colits (UC). Three hundred seventy-nine Jewish Israeli patients with IBD, 228 with CD (129 Ashkenazi and 99 non-Ashkenazi), and 151 patients with UC (72 Ashkenazi, 79 non-Ashkenazi) were studied. The control group included 495 healthy blood donors (352 non-Ashkenazi and 143 Ashkenazi). All subjects were genotyped for the BsmI VDR gene polymorphism. The frequency of the BB genotype was higher in Ashkenazi patients with UC compared to Ashkenazi controls (0.21 vs. 0.11, p = 0.042, odds ratio 2.27, 95% confidence interval [CI] 1.06-4.9). There were no differences in the prevalence of the BB genotype or the B allele between ethnically matched patients with CD and UC. Nor were there differences in the BB genotype or B allele frequencies between CD patients and ethnically matched controls. The BsmI VDR gene polymorphism is associated with increased susceptibility to UC in Israeli Ashkenazi patients with UC.  相似文献   

11.
12.
d-Amino acids, enantiomers of l-amino acids, are increasingly recognized as physiologically active molecules as well as potential biomarkers for diseases. d-Amino acid oxidase (DAO) catalyzes the oxidative deamination of d-amino acids and is present in a wide variety of organisms from yeasts to humans. Previous studies indicated that LEA rats lacked DAO activity, and levels of d-Ser and d-Ala were markedly increased in their tissues, suggesting a mutated locus responsible for the lack of Dao activity (ldao) existed in the LEA genome. Sequence analysis identified deletion breakpoints located in intron 4–5 of the Dao gene and intron 1–2 of the Svop gene, resulting in a 54.1-kb deletion which encompassed exons 5–12 of the Dao gene and exons 2–16 of the Svop gene. We developed a novel congenic rat strain, F344-Daoldao, harboring the Daoldao mutation from LEA rats delivered onto the F344 genetic background. Compared to the parental F344 strain, in F344-Daoldao rats d-Ala was markedly increased in both cerebrum and cerebellum, while d-Ser content was increased in cerebellum but not cerebrum. d-Ala, d-Ser, d-Pro and d-Leu levels were also elevated in F344-Daoldao plasma. F344-Daoldao rats represent a novel model system that will aid in elucidating the physiological functions of d-amino acids in vivo. (203 words).  相似文献   

13.
Circular DNA resulting from V gene replacement was studied with an A-MuLV transformed cell line containing ablts. This cell line undergoes V gene replacement at elevated temperatures in the immunoglobulin (Ig) heavy chain (H) gene. Examination of circular DNA revealed that a heptamer-related sequence (TACTGTG) within the coding region of VDJ was joined to the recombination signal sequence (RSS) of a germline VH segment. This provides direct evidence for a intramolecular DNA deletion mechanism for V gene replacement. In the pre-B cell line as well as in in vivo lymphocytes, unusual circular DNAs were found which were structurally similar to the V gene replacement circles. They represented excision products of the deletion type recombination between one complete RSS and a heptamer-like sequence in the Ig H region.  相似文献   

14.
The presence of four lysosomal storage diseases (LSDs) at increased frequency in the Ashkenazi Jewish population has suggested to many the operation of natural selection (carrier advantage) as the driving force. We compare LSDs and nonlysosomal storage diseases (NLSDs) in terms of the number of mutations, allele-frequency distributions, and estimated coalescence dates of mutations. We also provide new data on the European geographic distribution, in the Ashkenazi population, of seven LSD and seven NLSD mutations. No differences in any of the distributions were observed between LSDs and NLSDs. Furthermore, no regular pattern of geographic distribution was observed for LSD versus NLSD mutations-with some being more common in central Europe and others being more common in eastern Europe, within each group. The most striking disparate pattern was the geographic distribution of the two primary Tay-Sachs disease mutations, with the first being more common in central Europe (and likely older) and the second being exclusive to eastern Europe (primarily Lithuania and Russia) (and likely much younger). The latter demonstrates a pattern similar to two other recently arisen Lithuanian mutations, those for torsion dystonia and familial hypercholesterolemia. These observations provide compelling support for random genetic drift (chance founder effects, one approximately 11 centuries ago that affected all Ashkenazim and another approximately 5 centuries ago that affected Lithuanians), rather than selection, as the primary determinant of disease mutations in the Ashkenazi population.  相似文献   

15.
Maple syrup urine disease (MSUD) is a rare, autosomal recessive disorder of branched-chain amino acid metabolism. We noted that a large proportion (10 of 34) of families with MSUD that were followed in our clinic were of Ashkenazi Jewish (AJ) descent, leading us to search for a common mutation within this group. On the basis of genotyping data suggestive of a conserved haplotype at tightly linked markers on chromosome 6q14, the BCKDHB gene encoding the E1beta subunit was sequenced. Three novel mutations were identified in seven unrelated AJ patients with MSUD. The locations of the affected residues in the crystal structure of the E1beta subunit suggested possible mechanisms for the deleterious effects of these mutations. Large-scale population screening of AJ individuals for R183P, the mutation present in six of seven patients, revealed that the carrier frequency of the mutant allele was approximately 1/113; the patient not carrying R183P had a previously described homozygous mutation in the gene encoding the E2 subunit. These findings suggested that a limited number of mutations might underlie MSUD in the AJ population, potentially facilitating prenatal diagnosis and carrier detection of MSUD in this group.  相似文献   

16.
Summary The cystic fibrosis (CF) gene deletion F508 was studied in a Belgian population of 74 families and their 83 CF children. The haplotypes for CF and normal chromosomes had previously been determined with several linked DNA probes. In our CF population, the gene deletion F508 was found in 76% of the mutant alleles. Of the deletion F508, 97% segregated with the highest risk haplotype for the CF carrier status. Some 61% of our families were found to be homozygous for this major CF mutation. Each of our three pancreatic sufficiency patients (two of whom were siblings) was heterozygote for the F508 deletion.  相似文献   

17.
18.
19.
Although it is known that the hybrid male mouse is sterile just like any other animal’s heterogametic sex, the reason why only the male germ cells are impaired has yet to be discovered. TdT-mediated dUTP nick end labeling assay using a confocal fluorescence microscope and DNA fragmentation assay of hybrid testis indicated destruction of the mitochondrial DNA (mtDNA) rather than the nuclear DNA. Previously we reported that maternal mtDNA inheritance is through selective sperm mtDNA elimination based on the sperm factor and two egg factors, and expression of these three factors was recognized in the hybrid testis. It was thereby assumed that mtDNA destruction caused by the expression of maternal mtDNA inheritance system in male germ cells is implicated in the hybrid male sterility of mice.  相似文献   

20.
Hereditary nonpolyposis colorectal cancer (HNPCC) is caused by mutations in the mismatch-repair genes. We report here the identification and characterization of a founder mutation in MSH2 in the Ashkenazi Jewish population. We identified a nucleotide substitution, MSH2*1906G-->C, which results in a substitution of proline for alanine at codon 636 in the MSH2 protein. This allele was identified in 15 unrelated Ashkenazi Jewish families with HNPCC, most of which meet the Amsterdam criteria. Genotype analysis of 18 polymorphic loci within and flanking MSH2 suggested a single origin for the mutation. All colorectal cancers tested showed microsatellite instability and absence of MSH2 protein, by immunohistochemical analysis. In an analysis of a population-based incident series of 686 Ashkenazi Jews from Israel who have colorectal cancer, we identified 3 (0.44%) mutation carriers. Persons with a family history of colorectal or endometrial cancer were more likely to carry the mutation than were those without such a family history (P=.042), and those with colorectal cancer who carried the mutation were, on average, younger than affected individuals who did not carry it (P=.033). The mutation was not detected in either 566 unaffected Ashkenazi Jews from Israel or 1,022 control individuals from New York. In hospital-based series, the 1906C allele was identified in 5/463 Ashkenazi Jews with colorectal cancer, in 2/197 with endometrial cancer, and in 0/83 with ovarian cancer. When families identified by family history and in case series are included, 25 apparently unrelated Ashkenazi Jewish families have been found to harbor this mutation. Although this pathogenic mutation is not frequent in the Ashkenazi Jewish population (accounting for 2%-3% of colorectal cancer in those whose age at diagnosis is <60 years), it is highly penetrant and accounts for approximately one-third of HNPCC in Ashkenazi Jewish families that fulfill the Amsterdam criteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号