首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Genomic methylation, which influences many cellular processes such as gene expression and chromatin organization, generally declines with cellular senescence although some genes undergo paradoxical hypermethylation during cellular aging and immortalization. To explore potential mechanisms for this process, we analyzed the methylating activity of three DNA methyltransferases (Dnmts) in aging and immortalized WI-38 fibroblasts. Overall maintenance methylating activity by the Dnmts greatly decreased during cellular senescence. In immortalized WI-38 cells, maintenance methylating activity was similar to that of normal young cells. Combined de novo methylation activity of the Dnmts initially decreased but later increased as WI-38 cells aged and was strikingly elevated in immortalized cells. To further elucidate the mechanisms for changes in DNA methylation in aging and immortalized cells, the individual Dnmts were separated and individually assessed for maintenance and de novo methylating activity. We resolved three Dnmt fractions, one of which was the major maintenance methyltransferase, Dnmt1, which declined steadily in activity with cellular senescence and immortalization. However, a more basic Dnmt, which has significant de novo methylating activity, increased markedly in activity in aging and immortalized cells. We have identified this methyltransferase as Dnmt3b which has an important role in neoplastic transformation but its role in cellular senescence and immortalization has not previously been reported. An acidic Dnmt we isolated also had increased de novo methylating activity in senescent and immortalized WI-38 cells. These studies indicate that reduced genome-wide methylation in aging cells may be attributed to attenuated Dnmt1 activity but that regional or gene-localized hypermethylation in aging and immortalized cells may be linked to increased de novo methylation by Dnmts other than the maintenance methyltransferase.  相似文献   

2.
In primary mouse embryo fibroblasts (MEFs), oncogenic Ras induces growth arrest via Raf/MEK/extracellular signal-regulated kinase (ERK)-mediated activation of the p19ARF/p53 and INK4/Rb tumor suppressor pathways. Ablation of these same pathways causes spontaneous immortalization in MEFs, and oncogenic transformation by Ras requires ablation of one or both of these pathways. We show that Kinase Suppressor of Ras 1 (KSR1), a molecular scaffold for the Raf/MEK/ERK cascade, is necessary for RasV12-induced senescence, and its disruption enhances primary MEF immortalization. RasV12 failed to induce p53, p19ARF, p16INK4a, and p15INK4b expression in KSR1-/- MEFs and increased proliferation instead of causing growth arrest. Reintroduction of wild-type KSR1, but not a mutated KSR1 construct unable to bind activated ERK, rescued RasV12-induced senescence. On continuous culture, deletion of KSR1 accelerated the establishment of spontaneously immortalized cultures and increased the proportion of cultures escaping replicative crisis. Despite enhancing escape from both RasV12-induced and replicative senescence, however, both primary and immortalized KSR1-/- MEFs are completely resistant to RasV12-induced transformation. These data show that escape from senescence is not necessarily a precursor for oncogenic transformation. Furthermore, these data indicate that KSR1 is a member of a unique class of proteins whose deletion blocks both senescence and transformation.  相似文献   

3.
We analyzed DNA methyltransferase (Dnmt) protein expression and DNA methylation patterns during four progressive stages of prostate cancer in the transgenic adenocarcinoma of mouse prostate (TRAMP) model, including prostatic intraepithelial neoplasia, well-differentiated tumors, early poorly differentiated tumors, and late poorly differentiated tumors. Dnmt1, Dnmt3a, and Dnmt3b protein expression were increased in all stages; however, after normalization to cyclin A to account for cell cycle regulation, Dnmt proteins remained overexpressed in prostatic intraepithelial neoplasia and well-differentiated tumors, but not in poorly differentiated tumors. Restriction landmark genomic scanning analysis of locus-specific methylation revealed a high incidence of hypermethylation only in poorly differentiated (early and late) tumors. Several genes identified by restriction landmark genomic scanning showed hypermethylation of downstream regions correlating with mRNA overexpression, including p16INK4a, p19ARF, and Cacna1a. Parallel gene expression and DNA methylation analyses suggests that gene overexpression precedes downstream hypermethylation during prostate tumor progression. In contrast to gene hypermethylation, genomic DNA hypomethylation, including hypomethylation of repetitive elements and loss of genomic 5-methyldeoxycytidine, occurred in both early and late stages of prostate cancer. DNA hypermethylation and DNA hypomethylation did not correlate in TRAMP, and Dnmt protein expression did not correlate with either variable, with the exception of a borderline significant association between Dnmt1 expression and DNA hypermethylation. In summary, our data reveal the relative timing of and relationship between key alterations of the DNA methylation pathway occurring during prostate tumor progression in an in vivo model system.  相似文献   

4.
5.
The Cdc14 dual-specificity phosphatase plays a key role in the mitotic exit of budding yeast cells. Mammals have two homologues, Cdc14a and Cdc14b. Unlike the yeast counterpart, neither Cdc14a nor Cdc14b seems to be essential for mitotic exit. To determine the physiological function of Cdc14b, we generated mice deficient in the phosphatase. The mutant mice were viable and did not display overt abnormalities. However, these mice developed signs of aging at much younger ages than the wild-type mice. At the cellular level, the Cdc14b-deficient mouse embryonic fibroblasts (MEFs) grew more slowly than the controls at later passages as a result of increased rates of senescence. Consistent with these premature-aging phenotypes, Cdc14b-deficient cells accumulated more endogenous DNA damage than the wild-type cells, and more Cdc14b-deficient MEFs entered senescence than control MEFs in response to exogenous DNA damage. However, no deficiencies in DNA damage checkpoint response were detected in Cdc14b mutant cells, suggesting that the function of Cdc14b is required for efficient DNA damage repair.  相似文献   

6.
Zhang W  Ji W  Yang J  Yang L  Chen W  Zhuang Z 《Life sciences》2008,83(13-14):475-480
DNA methylation is considered to play an essential role in cellular senescence. To uncover the mechanism underlying cellular senescence, we established the model of premature senescence induced by hydrogen peroxide (H(2)O(2)) in human embryonic lung fibroblasts and investigated the changes of genome methylation, DNA methyltransferases (DNMTs) and DNA-binding domain proteins (MBDs) in comparison with those observed during normal replicative senescence. We found that premature senescence triggered by H(2)O(2) exhibited distinct morphological characteristics and proliferative capacity which were similar to those of replicative senescence. The genome methylation level decreased gradually during the premature as well as replicative senescence, which was associated with the reduction in the expression of DNMT1, reflecting global hypomethylation as a distinct feature of senescent cells. The levels of DNMT3b and methyl-CpG binding protein 2 (MeCP2) increased in both mid-aged and replicative senescent cells, while DNMT3a and MBD2 were upregulated in the mid-aged cells. Only DNMT3b was elevated in the cells in the premature senescence persistence status. Additionally, the expression for DNMTs, MBD2 and MeCP2 was increased rapidly upon H(2)O(2) treatment. These results indicate that H(2)O(2)-induced premature senescence share some features of replicative senescence, such as basic biological characteristics and global hypomethylation while there are slight differences in the profile of methylation-associated enzyme expression. Oxidative damage may hence be a causative factor in epigenetic alteration partly responsible for cellular senescence.  相似文献   

7.
8.
《Epigenetics》2013,8(5):281-286
Demethylation of 5-methylcytosine in genomic DNA is believed to be one of the mechanisms underlying replicative life-span of mammalian cells. Both proliferation associated SNF2-like gene (PASG, also termed Lsh) and DNA methyltransferase 3B (Dnmt3b) knockout mice result in embryonic genomic hypomethylation and a replicative senescent phenotype. However, it is unclear whether gradual demethylation of DNA during somatic cell division is directly involved in senescence. In this study, we retrovirally transduced TIG-7 human fibroblasts with a shRNA against PASG and compared the rate of change in DNA methylation as well as the replicative life-span to control cells under low (3%) and ambient (20%) oxygen. Expression of PASG protein was decreased by approximately 80% compared to control cells following transduction of PASG shRNA gene. The rate of cell growth was the same in both control and PASG-suppressed cells. The rate of demethylation of DNA was significantly increased in PASG-suppressed cells as compared control cells. However, decreased PASG expression did not shorten the replicative life-span of TIG-7 cells. Culture under low oxygen extended the life-span of TIG-7 cells but did not alter the rate of DNA demethylation. While knockout of PASG during development results in genomic hypomethylation and premature senescence, our results show that while down-regulation of PASG expression in a somatic cell also leads to DNA hypomethylation, there is no associated senescent phenotype. These results suggest differences in cellular consequences of hypomethylation mediated by PASG during development compared to that in somatic cells.  相似文献   

9.
To ascertain whether p53 deficiency in vivo leads to the deregulation of DNA methylation machinery prior to tumor development, we investigated the expression profile of DNA methyltransferases in the thymus and the liver of p53(+/+), p53(+/-), and p53(-/-) mice at 7 weeks of age before tumor development. The expression of DNA methyltransferases was examined in the thymus at 7 weeks of age, since the malignant T-cell lymphoma develops most frequently in p53(-/-) mice around 20 weeks of age. Both mRNA and protein levels of Dnmt1 and Dnmt3b were increased in the thymus and the liver of p53-deficient mice. The expression of Dnmt3a was also increased in the liver but not in the thymus of p53-deficient mice. Dnmt3L expression was reduced in the thymus of p53(+/-) and p53(-/-) mice. The total 5-methylcytosine (5-MeC) in the genomic DNA of p53(+/+), p53(+/-), and p53(-/-) mice was quantitated by dot-blot using antibody against 5-MeC. Global methylation was increased in the thymus and the liver of p53-deficient mice. To correlate the deregulated expression of DNA methyltransferases with the disturbance of the epigenetic integrity, we examined the DNA methylation of the imprinting control region (ICR) at the insulin-like growth factor II (Igf2)/H19 loci in the thymus and the liver of p53(+/+), p53(+/-), and p53(-/-) mice. The region containing two CCCTC binding factor (CTCF) binding sites in the 5'-ICR tended to be hypomethylated in the thymus of p53(-/-) mice, but not in the liver. The expression profile of Igf2 and H19 indicated that the thymus-specific changes of Igf2 and H19 expression were coherent to the hypomethylation of the ICR in the thymus. Our results suggest that p53 is required for the maintenance of DNA methylation patterns in vivo.  相似文献   

10.
M Okano  D W Bell  D A Haber  E Li 《Cell》1999,99(3):247-257
The establishment of DNA methylation patterns requires de novo methylation that occurs predominantly during early development and gametogenesis in mice. Here we demonstrate that two recently identified DNA methyltransferases, Dnmt3a and Dnmt3b, are essential for de novo methylation and for mouse development. Inactivation of both genes by gene targeting blocks de novo methylation in ES cells and early embryos, but it has no effect on maintenance of imprinted methylation patterns. Dnmt3a and Dnmt3b also exhibit nonoverlapping functions in development, with Dnmt3b specifically required for methylation of centromeric minor satellite repeats. Mutations of human DNMT3B are found in ICF syndrome, a developmental defect characterized by hypomethylation of pericentromeric repeats. Our results indicate that both Dnmt3a and Dnmt3b function as de novo methyltransferases that play important roles in normal development and disease.  相似文献   

11.
12.
Dnmt3a and Dnmt3b are paralogous enzymes responsible for de novo DNA methylation but with distinguished biological functions. In mice, disruption of Dnmt3b but not Dnmt3a causes global DNA hypomethylation, especially in repetitive sequences, which comprise the large majority of methylated DNA in the genome. By measuring DNA methylation activity of Dnmt3a and Dnmt3b homologues from five species, we found that mammalian Dnmt3b possessed significantly higher methylation activity on chromatin DNA than Dnmt3a and non-mammalian Dnmt3b. Sequence comparison and mutagenesis experiments identified a single amino acid substitution (I662N) in mammalian Dnmt3b as being crucial for its high chromatin DNA methylation activity. Further mechanistic studies demonstrated this substitution markedly enhanced the binding of Dnmt3b to nucleosomes and hence increased the chromatin DNA methylation activity. Moreover, this substitution was crucial for Dnmt3b to efficiently methylate repetitive sequences, which increased dramatically in mammalian genomes. Consistent with our observation that Dnmt3b evolved more rapidly than Dnmt3a during the emergence of mammals, these results demonstrated that the I662N substitution in mammalian Dnmt3b conferred enhanced chromatin DNA methylation activity and contributed to functional adaptation in the epigenetic system.  相似文献   

13.
This protocol describes a rapid, precise method for generating sets of embryonic stem (ES) cells or mouse embryonic fibroblasts (MEFs) harboring point mutations in the p53 tumor suppressor gene (officially known as Trp53). The strategy uses cells from the Trp53 (p53-null) 'platform' mouse, which allows site-specific integration of plasmid DNA into the Trp53 locus. Simple PCR protocols identify correctly targeted clones and immunoblots verify re-expression of the protein. We also present protocol modifications needed for efficient recovery of MEF clones expressing p53 constructs that retain wild-type function, including growth at low (3%) oxygen and transient downregulation of p53 regulators to forestall cell senescence of primary MEFs. A library of cell lines expressing various p53 mutants derived from the same population of primary fibroblasts or platform ES cells can be acquired and screened in less than 1 month.  相似文献   

14.
15.
Normal cells have a strictly limited growth potential and senesce after a defined number of population doublings (PDs). In contrast, tumor cells often exhibit an apparently unlimited proliferative potential and are termed immortalized. Although spontaneous immortalization of normal human cells in vitro is an extremely rare event, we observed this in fibroblasts from an affected member of a Li-Fraumeni syndrome kindred. The fibroblasts were heterozygous for a p53 mutation and underwent senescence as expected at PD 40. In four separate senescent cultures (A to D), there were cells that eventually recommenced proliferation. This was associated with aneuploidy in all four cultures and either loss (cultures A, C, and D) or mutation (culture B) of the wild-type (wt) p53 allele. Loss of wt p53 function was insufficient for immortalization, since cultures A, B, and D subsequently entered crisis from which they did not escape. Culture C has continued proliferating beyond 400 PDs and thus appears to be immortalized. In contrast to the other cultures, the immortalized cells have no detectable p16INK4 protein. A culture that had a limited extension of proliferative potential exhibited a progressive decrease in telomere length with increasing PD. In the culture that subsequently became immortalized, the same trend occurred until PD 73, after which there was a significant increase in the amount of telomeric DNA, despite the absence of telomerase activity. Immortalization of these cells thus appears to be associated with loss of wt p53 and p16INK4 expression and a novel mechanism for the elongation of telomeres.  相似文献   

16.
17.
18.
High rate of abortion and developmental abnormalities is thought to be closely associated with inefficient epigenetic reprogramming of the transplanted nuclei during bovine cloning.It is known that one of the important mechanisms for epigenetic reprogramming is DNA methylation.DNA methylation is established and maintained by DNA methyltransferases(DNMTs),therefore,it is postulated that the inefficient epigenetic reprogramming of transplanted nuclei may be due to abnormal expression of DNMTs.Since DNA methylation can strongly inhibit gene expression,aberrant DNA methylation of DNMT genes may disturb gene expression.But presently,it is not clear whether the methylation abnormality of DNMT genes is related to developmental failure of somatic cell nuclear transfer embryos.In our study,we analyzed methylation patterns of the 5' regions of four DNMT genes including Dnmt3a,Dnmt3b,Dnmtl and Dnmt2 in four aborted bovine clones.Using bisulfite sequencing method,we found that 3 out of 4 aborted bovine clones(AF1,AF2 and AF3)showed either hypermethylation or hypomethylation in the 5' regions of Dnmt3a and Dnmt3b.indicating that Dnmt3a and Dnmt3b genes are not properly reprogrammed.However,the individual AF4 exhibited similar methylation level and pattern to age-matched in vitro fertilized (IVF)fetuses.Besides,we found that tle 5'regions of Dnmtl and Dnmt2 were nearly completely unmethylated in all normal adults.IVF fetuses,sperm and aborted clones.Together,our results suggest that the aberrant methylation of Dnmt3a and Dnmt3b 5' regions is probably associated with the high abortion of bovine clones.  相似文献   

19.
Normal human somatic cells have a finite life span and undergo replicative senescence after a limited number of cell divisions. Erosion of telomeric DNA has emerged as a key factor in senescence, which is antagonized during cell immortalization and transformation. To clarify the involvement of telomerase in the immortalization of keratinocytes, catalytic subunit of telomerase (hTERT) expression was restored in normal human esophageal epithelial cells (EPC2). EPC2-hTERT cells overcame senescence and were immortalized without p16INK4a genetic or epigenetic alterations. p16INK4a was expressed at moderate levels and remained functional as evidenced by induction with UV treatment and binding to cyclin-dependent kinase 4 and 6. There were no mutations in the p53 gene, and p53 was functionally intact. Importantly, senescence could be activated in the immortalized EPC2-hTERT cells by overexpression of oncogenic H-ras or p16INK4a. Furthermore, the EPC2-hTERT cells yielded basal cell hyperplasia in an innovative organotypic culture system in contrast to a normal epithelium from parental cells. These comprehensive results indicate that the expression of telomerase induces immortalization of normal human esophageal keratinocytes without inactivation of p16INK4a/pRb pathway or abrogation of the p53 pathway.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号