首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Arterial--venous differences for metabolites across liver, kidney and hindquarters were measured in fed or starved, artificially ventilated chickens. The results indicate that the liver takes up amino acids under both conditions. Urate and glucose are released by the liver in both the fed and the starved state. Lactate and amino acids are extracted from blood by the kidneys, and this increases in the starved chicken. Urate is removed from the circulation by the kidney in the fed and starved state and excreted. In the fed bird there is no significant arteriovenous difference of glucose across the kidney, but in the starved state the kidney releases glucose into the circulation. The hindquarters take up glucose in the fed but not in the starved state. The branched-chain amino acids valine and leucine were taken up by the hindquarters in the fed, but not the starved, chicken. Glycerol is released by the hindquarter of fed and starved chickens. In the starved state, alanine and glutamine represent 57% of the amino acids released by the hindquarter. Lactate is released by the hindquarter of starved chickens and represents the major gluconeogenic carbon source released by the hindquarter and taken up by kidney and liver. Although the liver is the major gluconeogenic organ in the starved chicken, the kidney accounts for approx. 30% of the glucose produced.  相似文献   

2.
The "in vivo" handling of L-alanine in 24 hours starved rats, in which obesity was induced by feeding with cafeteria diet, was compared with that of starved control rats. 14C-alanine was administered in trace amounts in order not to affect the normal handling of this amino acid. The results obtained in blood and liver support a lowered glucose formation from alanine. The specific radioactivities corresponding to lactate, glutamate + glutamine and asparagine as well as total protein and total lipid, were all lowered in the obese group. This strongly suggests that glucose formation from alanine in the liver was impaired. The specific radioactivity of the metabolites studied in the striated muscle are compatible with the above suggestion. It can be concluded that the glucose alanine cycle operation is inhibited in the cafeteria diet starved obese rats.  相似文献   

3.
The blood volume increased during normal feeding, and did not decrease during fasting at the end of the stadium. The unexpectedly high blood volume of starved crickets might be an adaptation to increase chances for moulting via stretch receptor stimulation.The amount of blood amino acids was not changed by feeding, but increased with fasting or starvation. Thus amino acid levels in the blood were not directly related to amino acid input from the gut.The blood protein concentration did not change during starvation, but the amino acid concentration was 33% higher in starved crickets that drank water as opposed to those given saline to drink. Thus amino acid levels in the blood were not related directly to blood protein concentration.The blood amino acid concentration was 19–22 mM/l in response to salt intake by feeding crickets or starved crickets drinking saline. The concentration was 32–38 mM/l when the crickets were fasting prior to and after ecdysis or when starved with water to drink during the time when they would normally be feeding. The increase of amino acids during fasting was due to a proportional increase in all amino acids augmented by a 3 × increase in tyrosine. The increase during salt depleting starvation was due to a doubling of the two predominant amino acids proline and glycine. Proline and glycine were not increased in starved crickets drinking saline, thus starvation was not the reason for the increase. This is the first instance where specific amino acids have been implicated in osmoregulation.  相似文献   

4.
The activities of alanine and aspartate transaminases, adenylate deaminase, glutamine synthetase and glutamate and xanthine dehydrogenases have been measured in liver, yolk sac membrane, intestine and breast and leg muscle of domestic fowl hatchlings receiving for 3 or 5 days either a standard diet or hard boiled eggwhite as well as in 3 or 5 days starved animals. The patterns of activation of amino acid metabolism enzymes were fully comparable in protein-fed and starved groups with respect to fed controls; the differences with respect to the latter became more marked in 5- than in 3-days old chicks. In 5-days old chicks intestine alanine transaminase activity increased in parallel to that of liver in protein-fed animals but not in those starved, in agreement with an enhanced alanine transfer between both organs under this situation. Both, starvation and protein-feeding, induced a general decrease in the amino acid metabolizing ability of muscle. Glutamine (but not alanine) synthetizing capabilities were enhanced.  相似文献   

5.
Moderate obesity (17% excess body weight) was induced in female rats by offering a "cafeteria" diet during 82 days. The adaptive changes in five amino-acid-metabolism enzymes were determined in liver and white- and brown adipose tissues by comparison with chow fed controls both in the fed and 24-h starved states. Plasma urea levels were lower in the obese and the changes in enzymatic activities pointed to a lower rate of amino-acid metabolism in our dietary obesity group. The levels of activity of amino-acid-metabolism enzymes in brown adipose tissue were higher than in white adipose tissue and in most cases comparable to that of liver. The importance of amino acids as a fuel source in brown adipose tissue thermogenesis cannot be ruled out.  相似文献   

6.
1. Analysing the free amino acid content of the hemolymph of normally fed, starved and schistosome-infected Biomphalaria glabrata we identified 22 amino acids and amines, respectively. 2. In comparison with normally fed snails the free amino acid content of starved and infected snails was significantly reduced. 3. However, only slight differences between the ornithine and citrulline content occurred in the three test groups.  相似文献   

7.
Arteriovenous differences of amino acids across the mammary glands of lactating rats are diminished when the rats are starved for 24 h. When 24 h-starved rats were refed for 2 1/2 h, the arteriovenous differences of amino acids returned to values similar to those found in well-fed rats. In order to find a possible explanation for these rapid changes, we tested the effect of ketone bodies on amino acid uptake by the gland. At 5 min after injection of acetoacetate to fed rats, when the total concentration of ketone bodies in blood was similar to that found in starvation, the uptake of amino acids by the mammary gland was similar to that found after starvation, i.e. lower than in fed rats. However, 30 min after administration of acetoacetate, when the arterial concentration of ketone bodies had returned to values similar to those in fed rats, the arteriovenous differences of amino acids were similar to those found in fed rats. We conclude that the changes in blood ketone bodies may be responsible, at least in part, for the changes in amino acid uptake that occur in starvation and in the starvation--refeeding transition.  相似文献   

8.
Obese-hyperglycaemic mice and lean mice were injected with dichloroacetate to determine the significance of gluconeogenesis in maintaining the hyperglycaemia of obese mice and to investigate the effects of a fall in blood glucose on fatty acid synthesis. One hour after the second of two, hourly, injections of dichloroacetate the blood glucose concentrations in fed and starved lean mice were decreased, whereas in obese mice they were sharply increased. In obese and lean mice, both fed and starved, dichloroacetate decreased plasma lactate but insulin was unchanged. The quantity of liver glycogen was decreased in all dichloroacetate treated mice, with the largest falls in fed and starved obese mice, which had much larger glycogen stores than lean mice. Dichloroacetate treatment decreased the concentration of plasma non-esterified fatty acids in fed and starved obese mice and fed lean mice but not in starved lean mice. Fatty acid synthesis in white (inguinal, subcutaneous) adipose tissue was stimulated by dichloroacetate in fed obese mice and inhibited in fed lean mice. Fatty acid synthesis in brown adipose tissue (scapular) was faster than in white adipose tissue and was less affected by dichloroacetate although the changes were in the same direction as in white adipose tissue. We attribute the increased hyperglycaemia of obese mice treated with dichloroacetate to increased glycogenolysis coupled with a failure to secrete additional insulin in response to the raised blood glucose. This high blood glucose concentration in dichloroacetate treated obese mice may in turn explain the increased fatty acid synthesis in their white adipose tissue.  相似文献   

9.
Plasma amino acids of Zucker obese (fa/fa) and lean (Fa/?) rats fed either a reference nonpurified pellet or a cafeteria diet have been studied from 30 to 60 days after birth. Obese rats showed higher plasma branched chain amino acid levels but similar total amino acids, urea and glucose concentrations. The ingestion of a cafeteria diet induced higher levels in many amino acids, as well as in the composite figure in lean rats, but failed to alter total 2-amino nitrogen concentrations in obese rats, despite high levels in several non-essential amino acids and lower values in essential amino acids; urea levels were much lower in rats fed the cafeteria diet. The results are consistent with an impairment of amino acid nitrogen elimination via urea cycle in cafeteria diet-fed rats. This is independent of the hyperinsulinemia-driven plasma accumulation of several essential amino acids induced by genetic obesity. The effects were, then additive.  相似文献   

10.
Poly(adenylic acid) polymerase was extracted from liver nuclei and mitochondria of rats either fed ad libitum, starved overnight or starved and then re-fed with a complete amino acid mixture for 1-3 h. The enzymes were partially purified and assayed by using exogenous primers. Starvation resulted in an 80% decrease in the total activity of the purified nuclear enzyme, and the mitochondrial enzyme activity diminished to almost zero after overnight starvation. Measurements of the protein content of whole nuclei or mitochondria and of the enzyme extracts from these organelles indicated that the decrease in enzyme activity on starvation was not caused by incomplete extraction of the enzyme from the starved animals. Re-feeding the animals with the complete amino acid mixture increased the total activity of poly(A) polymerase from the nuclei and mitochondria by 1.9-fold and 63-fold respectively. Under these conditions, the total protein content of the nuclei and mitochondria increased by only 13 and 32% respectively. These data indicate that poly(A) polymerase is one of the cellular proteins specifically regulated by amino acid supply.  相似文献   

11.
Mosquitoes utilize the amino acids derived from blood meal protein to produce egg proteins. But the amino acids can also be used to produce egg lipid or can be oxidized for energy production. These latter two processes result in the release of nitrogen as toxic ammonia. Therefore, amino acids must be processed in such a way that amino acid nitrogen can be incorporated into non-toxic waste products. Proline is the predominant amino acid in the hemolymph of the adult female mosquito Aedes aegypti. After feeding on albumin meal, hemolymph proline levels increased five-fold over unfed levels, reached maximal levels in the first hours after feeding and remained high through oviposition. Hemolymph proline levels increased as the concentration of protein in the meal increased. When starved of sugar for 24 h prior to feeding on an albumin meal, hemolymph proline levels increased four-fold over the proline levels of non-starved mosquitoes. Proline levels after feeding on a protein deficient in essential amino acids, pike parvalbumin, increased to twice the levels of albumin fed mosquitoes. Based on these observations, we propose that mosquitoes utilize proline as a temporary nitrogen sink to store ammonia arising from deamination of blood meal amino acid.  相似文献   

12.
1. Addition of haem to cell-free extracts from Ehrlich ascites tumour cells stimulates protein synthesis only in extracts from cells previously incubated in nutritionally complete conditions. Extracts from amino-acid-deprived cells do not respond to haem. The stimulation of protein synthesis in fed cell extracts is due to increased initiation on endogenous mRNA mediated by an increase in the levels of 40-S-subunit X Met-tRNA initiation complexes. Extracts from starved cells exhibit a defect in 40-S initiation complex formation which cannot be overcome by haem. 2. Experiments to test for the presence of an inhibitor of initiation in Ehrlich cell extracts by monitoring effects on translation in haem-supplemented reticulocyte lysates have revealed that extracts from both fed and starved cells contain one or more inhibitory activities which shut off protein synthesis, dissagregate polysomes and reduce the level of 40-S initiation complexes in the lysate. Extracts from starved cells are more inhibitory for protein synthesis than those from fed cells. 3. Initiation factor eIF-2 is phosphorylated by an endogenous Ehrlich cell protein kinase in vitro, but this occurs to the same extent in extracts from fed and starved cells. 4. We propose a possible model for the role of eIF-2 in the control of protein synthesis by amino acid supply in Ehrlich cells.  相似文献   

13.
Actual and total branched-chain 2-oxo acid dehydrogenase activities were determined in homogenates of incubated diaphragms from fed and starved rats. Incubation in Krebs-Ringer buffer increased the activity state, but caused considerable loss of total activity. Palmitate oxidation rates and citrate synthase activities did not significantly change on incubation. Starved muscles showed a higher extent of activation after 15 min of incubation (not after 30 and 60 min) and a smaller loss of total activity. Experiments with the transaminase inhibitor amino-oxyacetate confirm that the contribution of endogenous amino acids to the oxidation precursor pool is also smaller in diaphragms from starved rats on incubation in vitro. These phenomena together cause the higher 14CO2 production from 14C-labelled branched-chain amino acids and 2-oxo acids in muscles from starved than from fed rats. High concentrations of branched-chain 2-oxo acids, and the presence of 2-chloro-4-methyl-pentanoate, octanoate or ketone bodies, increase the extent of activation of the dehydrogenase complex; glucose and pyruvate had no effect. The observed changes of the activity state by these metabolites are discussed in relation to their interaction with branched-chain 2-oxo acid oxidation in incubated hemidiaphragms.  相似文献   

14.
The effects of experimental inflammation, induced by subcutaneous injection of oil of turpentine, on adaptive synthesis of rat liver fatty acid synthetase were investigated. Liver levels of α1-acid glycoprotein, an “acute-phase” protein known to be synthesized at an accelerated rate as a result of inflammation, were also measured. The increase in fatty acid synthetase activity in livers of rats which were starved and then fed a fat-free diet was suppressed to an extent dependent on the periods between fat-free feeding and inflammation and inflammation and sacrifice. Inflammation induced 2 h after refeeding gave complete suppression, whereas inflammation after 10 h of fat-free feeding had no suppressive effect. When induced 2.5 or 7.5 h after refeeding, inflammation led to partial suppression of the increase in fatty acid synthetase activity. The increase in liver α1,-acid glycoprotein levels characteristic of inflammation was reduced in animals inflamed 7.5 or 10 h after fat-free feeding, but was unaffected when inflammation was induced 2.5 h after refeeding. The ratio of free to membrane-bound polyribosomes in liver increased from 0.77 in rats which were neither starved nor fed a fat-free diet to 3.31 in rats which were starved and then fed a fat-free diet for 15 h. When inflammation was induced 2.5 h after refeeding, the ratio increased to only 1.74 after 15 h of refeeding. Inflammation resulted in a marked reduction in the level of glycogen in the liver, regardless of the time of induction of inflammation and the dietary status of the animal.  相似文献   

15.
The effect of acetoacetate on plasma insulin concentration   总被引:12,自引:9,他引:3       下载免费PDF全文
1. Sodium acetoacetate was infused into the inferior vena cava of fed rats, 48h-starved rats, and fed streptozotocin-diabetic rats treated with insulin. Arterial blood was obtained from a femoral artery catheter. 2. Acetoacetate infusion caused a fall in blood glucose concentration in fed rats from 6.16 to 5.11mm in 1h, whereas no change occurred in starved or fed-diabetic rats. 3. Plasma free fatty acids decreased within 10min, from 0.82 to 0.64mequiv./l in fed rats, 1.16 to 0.79mequiv./l in starved rats and 0.83 to 0.65mequiv./l in fed-diabetic rats. 4. At 10min the plasma concentration rose from 20 to 49.9muunits/ml in fed unanaesthetized rats and from 6.4 to 18.5muunits/ml in starved rats. There was no change in insulin concentration in the diabetic rats. 5. Nembutal-anaesthetized fed rats had a more marked increase in plasma insulin concentration, from 30 to 101muunits/ml within 10min. 6. A fall in blood glucose concentration in fed rats and a decrease in free fatty acids in both fed and starved rats is to be expected as a consequence of the increase in plasma insulin. 7. The fall in the concentration of free fatty acids in diabetic rats may be due to a direct effect of ketone bodies on adipose tissue. A similar effect on free fatty acids could also be operative in normal fed or starved rats.  相似文献   

16.
17.
A combination of the isotope-dilution and arterio-venous (AV) difference techniques was used to study simultaneously the metabolism of valine in the whole body and in the hind-limb muscles of fed and starved (40 h) sheep. The net exchange of gluconeogenic amino acids across hind-limb muscles was also studied. Valine entry rate was unaffected by nutritional status. There was significant extraction of valine by hind-limb muscles in both fed and starved sheep. The percentage of valine uptake decarboxylated was higher (P less than 0.05) in fed sheep but the amount of valine decarboxylated was not significantly different. The proportion of valine uptake that was transaminated was about 30 times higher in starved sheep. About 54% of valine taken up by hind-limb muscle of starved sheep was metabolized. The corresponding value for fed sheep was 21%. The contribution of CO2 from valine decarboxylation to total hind-limb muscle CO2 output was about 0.2%. The output of alanine in both fed and starved sheep was low but the output of glutamine was relatively high and roughly equivalent to the amounts of aspartate, glutamate and branched-chain amino acids that were catabolized. This study has confirmed that valine is catabolized in sheep skeletal muscle, and shown that glutamine is a major carrier of amino nitrogen out of muscle.  相似文献   

18.
The amino acid concentrations in plasma and blood cells of 5-day old domestic fowl hatchlings that received either standard feeding, protein-feeding or were starved have been determined. The effects of 5-day starvation or protein feeding did not alter significantly the combined amino acid concentration of blood plasma, but decreased blood cell levels. The patterns of individual amino acid changes observed in starvation or protein-feeding were similar in both groups when compared with those of controls. However, starvation-induced effects were actually more marked than those observed in protein-fed animals. The patterns of change with starvation of individual amino acids in the hatchling blood compartments were very different from those observed in mammals subjected to short or medium-term starvation. The mechanisms controlling circulating amino acid concentrations act in both situations studied to maintain the plasma amino acid concentrations despite marked changes in the availability of 2-amino nitrogen energy to the animal; changes in blood amino acid compartmentation buffering plasma amino acid availability.  相似文献   

19.
Key role of L-alanine in the control of hepatic protein synthesis.   总被引:3,自引:3,他引:0       下载免费PDF全文
We investigated the effects of administration of single amino acids to starved rats on the regulation of protein synthesis in the liver. Of all the amino acids tested, only alanine, ornithine and proline promoted statistically significant increases in the extent of hepatic polyribosome aggregation. The most effective of these was alanine, whose effect of promoting polyribosomal aggregation was accompanied by a decrease in the polypeptide-chain elongation time. The following observations indicate that alanine plays an important physiological role in the regulation of hepatic protein synthesis. Alanine was the amino acid showing the largest decrease in hepatic content in the transition from high (fed) to low (starved) rates of protein synthesis. The administration of glucose or pyruvate is also effective in increasing liver protein synthesis in starved rats, and their effects were accompanied by an increased hepatic alanine content. An increase in hepatic ornithine content does not lead to an increased protein synthesis, unless it is accompanied by an increase of alanine. The effect of alanine is observed either in vivo, in rats pretreated with cycloserine to prevent its transamination, or in isolated liver cells under conditions in which its metabolic transformation is fully impeded.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号