首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
2.
Understanding the mechanism(s) of action of the hepatitis B virus (HBV)-encoded protein HBx is fundamental to elucidating the underlying mechanisms of chronic liver disease and hepatocellular carcinoma caused by HBV infection. In our continued attempts to identify cellular targets of HBx, we have previously reported the identification of a novel cellular protein with the aid of a yeast two-hybrid assay. This cellular gene was identified as a third member of the family of human genes that encode the voltage-dependent anion channel (HVDAC3). In the present study, physical interaction between HBx and HVDAC3 was established by standard in vitro and in vivo methods. Confocal laser microscopy of transfected cells with respective expression vectors colocalized HVDAC3 and HBx to mitochondria. This novel, heretofore unreported subcellular distribution of HBx in mitochondria implies a functional role of HBx in functions associated with mitochondria. Using a stable cationic fluorophore dye, CMXRos, we show that HBx expression in cultured human hepatoma cells leads to alteration of mitochondrial transmembrane potential. Such functional roles of HBx in affecting mitochondrial physiology have implications for HBV-induced liver injury and the development of hepatocellular carcinoma.  相似文献   

3.
The smallest gene HBx of Hepatitis B virus (HBV) is recognized as an important viral oncogene (V-oncogene) in the hepatocarcinogenesis. Our previous work demonstrated that RMP is a cellular oncogene (C-oncogene) required for the proliferation of hepatocellular carcinoma (HCC) cells. Here we presented the collaboration between V-oncogene HBx and C-oncogene RMP in the development of HCC. The coexpression of HBx and RMP resulted in the cooperative effect of antiapoptosis and proliferation of HCC cells. In vivo, overexpression of RMP accelerated the growth of HBx-induced xenograft tumors in nude mice and vice versa HBx promoted the growth of RMP-driven xenograft tumors. Although HBx didn''t regulate the expression of RMP, HBx and RMP interact with each other and collocalized in the cytoplasm of HCC cells. HBx and RMP collaboratively inhibited the expression of apoptotic factors and promoted the expression of antiapoptotic factors. This finding suggests that HBV may induce, or at least partially contributes to the carcinogenesis of HCC, through its V-oncoprotein HBx interacting with the C-oncoprotein RMP.  相似文献   

4.
5.
HBx (hepatitis B virus X) viral oncoprotein is a multifunctional protein of which the cellular level may be one of the important factors in determining HBV-mediated pathological progression of liver diseases, chronic hepatitis, and hepatocellular carcinoma. Our previous work revealed that adriamycin, a chemotherapeutic agent, caused a marked increase in the intracellular level of HBx by retarding its rapid degradation. In the present study, modulation of HBx expression was found to be confined to adriamycin but not to other chemotherapeutic agents, cisplatin and 5-fluorouracil. Interestingly, adriamycin caused a rapid increase of reactive oxygen species (ROS) and its accumulation continued until 24h. In contrast, two other agents had little effect on ROS generation, suggesting the possible involvement of ROS in the HBx regulation. In fact, direct addition of H(2)O(2) to the cells significantly increased the level of HBx protein in HBx-expressing ChangX-34 cells as well as in hepatitis B virus-related hepatoma cells, PLC/PRF/5 and HepG2.2.15 cells. Furthermore, antioxidants, N-acetyl-cysteine and pyrrolidinedithiocarbamate (PDTC), completely abolished the increase of HBx protein induced by adriamycin, indicating that adriamycin modulates the intracellular HBx level via ROS generation. Together, these findings provide a novel aspect of HBx regulation by cellular ROS level. Therefore, intracellular microenvironments generating ROS such as severe inflammation may aggravate the pathogenesis of liver disease by accumulating the HBx level.  相似文献   

6.
7.
Lim KH  Kim KH  Choi SI  Park ES  Park SH  Ryu K  Park YK  Kwon SY  Yang SI  Lee HC  Sung IK  Seong BL 《PloS one》2011,6(8):e22258
Hepatitis B virus (HBV) infection is one of the major causes of hepatocellular carcinoma (HCC) development. Hepatitis B virus X protein (HBx) is known to play a key role in the development of hepatocellular carcinoma (HCC). Several cellular proteins have been reported to be over-expressed in HBV-associated HCC tissues, but their role in the HBV-mediated oncogenesis remains largely unknown. Here, we explored the effect of the over-expressed cellular protein, a ribosomal protein S3a (RPS3a), on the HBx-induced NF-κB signaling as a critical step for HCC development. The enhancement of HBx-induced NF-κB signaling by RPS3a was investigated by its ability to translocate NF-κB (p65) into the nucleus and the knock-down analysis of RPS3a. Notably, further study revealed that the enhancement of NF-κB by RPS3a is mediated by its novel chaperoning activity toward physiological HBx. The over-expression of RPS3a significantly increased the solubility of highly aggregation-prone HBx. This chaperoning function of RPS3a for HBx is closely correlated with the enhanced NF-κB activity by RPS3a. In addition, the mutational study of RPS3a showed that its N-terminal domain (1-50 amino acids) is important for the chaperoning function and interaction with HBx. The results suggest that RPS3a, via extra-ribosomal chaperoning function for HBx, contributes to virally induced oncogenesis by enhancing HBx-induced NF-κB signaling pathway.  相似文献   

8.
The x protein of HBV (HBx) has been involved in the development of hepatocellular carcinoma (HCC), with a possible link to individual genotypes. Nevertheless, the underlying mechanism remains obscure. In this study, we aim to identify the HBx-induced protein profile in HepG2 cells by LC-MS/MS proteomics analysis. Our results indicated that proteins were differentially expressed in HepG2 cells transfected by HBx of various genotypes. Proteins associated with cytoskeleton were found to be either up-regulated (MACF1, HMGB1, Annexin A2) or down-regulated (Lamin A/C). These may in turn result in the decrease of focal adhesion and increase of cell migration in response to HBx. Levels of other cellular proteins with reported impact on the function of extracellular matrix (ECM) proteins and cell migration, including Ca2+-binding proteins (S100A11, S100A6, and S100A4) and proteasome protein (PSMA3), were affected by HBx. The differential protein profile identified in this study was also supported by our functional assay which indicated that cell migration was enhanced by HBx. Our preliminary study provided a new platform to establish a comprehensive cellular protein profile by LC-MS/MS proteomics analysis. Further downstream functional assays, including our reported cell migration assay, should provide new insights in the association between HCC and HBx.  相似文献   

9.
10.
Jagged1 is one of the ligands of Notch signaling pathway, which controls cellular proliferation and differentiation, and also plays important roles in various malignant tumors. However, the expression of Jagged1 in hepatocellular carcinoma (HCC) has not been elucidated, nor whether it is associated with hepatitis B virus X protein (HBx). In this study, we found that Jagged1 was highly expressed in 79.2% (42/53) of HCC tissues compared with adjacent nontumor liver (P <0.05), and its expression was found to be closely related with HBx (rs=0.522, P <0.001) in HCC tissues. Our in vitro study also showed that alteration of HBx expression in HCC cell lines led to a consistent change of Jagged1. Moreover, Jagged1 was found to co-localize and directly interact with HBx in HCC tissues and HBx expressed HCC cell lines. Our results reveal that Jagged1, which is regulated by HBx, may contribute to the development of HCC.  相似文献   

11.
12.
13.
14.
Hepatitis B virus infection is associated with hepatocellular carcinoma, claiming 1 million lives annually worldwide. To understand the carcinogenic mechanism of hepatitis B virus-encoded oncoprotein HBx, we explored the function of HBx interaction with its cellular target HBXIP. Previously, we demonstrated that viral HBx and cellular HBXIP control mitotic spindle formation, regulating centrosome splitting. By using various fragments of HBx, we determined that residues (137)CRHK(140) within HBx are necessary for binding HBXIP. Mutation of the (137)CRHK(140) motif in HBx abolished its ability to bind HBXIP and to dysregulate centrosome dynamics in HeLa and immortal diploid RPE-1 cells. Unlike wild-type HBx, which targets to centrosomes as determined by subcellular fractionation and immunofluorescence microscopy, HBx mutants failed to localize to centrosomes. Overexpression of viral HBx wild-type protein and knockdown of endogenous HBXIP altered centrosome assembly and induced modifications of pericentrin and centrin-2, two essential proteins required for centrosome formation and function, whereas HBXIP nonbinding mutants of HBx did not. Overexpression of HBXIP or fragments of HBXIP that bind HBx neutralized the effects of viral HBx on centrosome dynamics and spindle formation. These results suggest that HBXIP is a critical target of viral HBx for promoting genetic instability through formation of defective spindles and subsequent aberrant chromosome segregation.  相似文献   

15.
HBV (hepatitis B virus) remains a global health concern, especially in developing countries. It has been associated with the development of HCC (hepatocellular carcinoma). One of the four viral proteins, HBx, interacts with cellular proteins, which are involved in a series of cellular processes including cell migration. The Rho GTPases (guanine nucleotide triphosphatases) family of proteins is involved in the regulation of the reorganization of actin and cell migration. We have reported that HBV replication activates Rac1 through SH3 binding. Here, we reported that RhoA was activated by HBx in vitro. The cell motility was enhanced in HepG2 cells co-transfected with HBx and RhoA, compared with those transfected with RhoA alone. Our results were consistent with the recently reported role of RhoA in promoting cell motility and may provide new insights on the mechanism of HBV-associated HCC.  相似文献   

16.
17.
18.
肝细胞癌 (hepatocellular carcinoma, HCC)是我国最常见的恶性肿瘤之一,而HBV慢性感染是肝癌发生的主要原因.乙型肝炎病毒(HBV)中X基因编码的一种多功能蛋白(HBx),参与众多重要生物学过程的调控,并促进肝细胞癌的发生. 早期研究表明,HBx在HCC发生过程中发挥重要的调控功能,但其确切分子机制尚未完全明确. 近几年,HBx参与生物学过程的分子机制研究有了较快的进展. 有趣的是,研究发现,HBx在不同的细胞系以及HBV感染的不同阶段发挥促抑凋亡的双重作用,HBx还参与细胞自噬的调控. 此外,在HBx参与细胞增殖及肿瘤侵袭和转移等方面,也产生了一些新的认识. 本文将从HBx对肝细胞凋亡、自噬和增殖的调控及其对肝癌细胞转移和侵袭的调控等方面,对HBx参与肝细胞癌发生发展调控机制做一综述.  相似文献   

19.
Cui F  Wang Y  Wang J  Wei K  Hu J  Liu F  Wang H  Zhao X  Zhang X  Yang X 《Proteomics》2006,6(2):498-504
Chronic infection of hepatitis virus B (HBV) has been proven to be one of the most important risk factors of hepatocellular carcinoma (HCC). HBx has been shown to function in the viral life cycle and the development of HCC. Recently, we have reported that HBx transgenic mice (p21-HBx), generated by gene knockin, develop HCC at the age of 18 months. To further study the function of HBx during the development of HCC in vivo, we performed proteomic analysis of the transgenic and wild-type control mice. The combination of 2-DE and MALDI-TOF MS revealed that proteasome subunits (PSMA6, PSMB4, PSMC2 and PSMD12) were up-regulated in tumor tissues of the p21-HBx transgenic mice. Cathepsin B, ubiquinol-cytochrome C reductase core protein 1 and an ATP-dependent caseinolytic protease, which were involved in the cellular proteolytic process, were also found increased in tumors. The results were confirmed in tumors of transgenic mice and HCCs of human using RT-PCR. All these results suggested that the strengthened ubiquitin-proteasome and lysosomal pathway might contribute to the development of HBx-related HCC.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号