首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biocatalytic processes continue to find increasing application in industry. Therefore enzyme immobilization has also become of increasing importance as a means of allowing enzyme containment within reactors operating in continuous mode or else separation of enzyme after use in (fed-)batch reactors, as well as potential recycle. Whilst much has been reported in the scientific literature about enzyme immobilization methods, in many cases the protocol leads to losses in enzyme activity. In this review we outline the reasons for loss of activity during immobilization and highlight suitable diagnostic tests to elucidate the precise cause and thereby methods to restore activity. The need for standardized reporting of immobilization methods is also emphasized as a means of benchmarking alternative approaches.  相似文献   

2.
The immobilization of urease on the reticulated polyurethane foam, and the kinetic phenomenon of urea hydrolysis by the resulting immobilized urease in both batch squeezer and circulated flow reactors were studied. Urease was immobilized with bovine serum albumin and glutaraldehyde on polyurethane foam support of 7 to 15 mum thickness. The residual apparent activity of urease after immobilization was about 50%. The good hydrodynamic property and flexibility of polyurethane foam were retained in solution after immobilization. A modified biofilm reactor model was used to describe the kinetic phenomenon of urea hydrolysis in both batch squeezer and circulated flow reactors. The characteristic parameters of the reactor model for both bioreactors were obtained by combining the Rosenbrock optimization method, the Rungs-Kutta method, and the Newton-Raphson method. The best-fit results were in good agreement with the experimental data. This study suggests another application of polyurethane foam in enzyme immobilization and immobilized enzyme reactors, which offers potential for practical applications in various bioreactors. (c) 1992 John Wiley & Sons, Inc.  相似文献   

3.
Summary This work presents the optimization of the chemical steps involved in nylon modification with dimethyl sulphate, polyethyleneimine, glutaraldehyde and 2-diethyl aminoethylamine to obtain a weak basic anion exchange support. Activated nylon laminated membranes were utilized for aminoacylase immobilization, allowing an ionically adsorbed enzyme derivative with high activity (0.16 U/mg E·cm2) and low removed activity (<1%). Optimum immobilization conditions and kinetic parameters were also determined. This immobilized enzyme can be used in laminated enzyme membrane reactors.  相似文献   

4.
Immobilization of alcohol dehydrogenase (ADH) from Horse Liver inside porous supports promotes a dramatic stabilization of the enzyme against inactivation by air bubbles in stirred tank reactors. Moreover, immobilization of ADH on glyoxyl-agarose promotes additional stabilization against any distorting agent (pH, temperature, organic solvents, etc.). Stabilization is higher when using highly activated supports, they are able to immobilize both subunits of the enzyme. The best glyoxyl derivatives are much more stable than conventional ADH derivatives (e.g., immobilized on BrCN activated agarose). For example, glyoxyl immobilized ADH preserved full activity after incubation at pH 5.0 for 20h at room temperature and conventional derivatives (as well as the soluble enzyme) preserved less than 50% of activity after incubation under the same conditions. Moreover, glyoxyl derivatives are more than 10 times more stable than BrCN derivatives when incubated in 50% acetone at pH 7.0. Multipoint covalent immobilization, in addition to multisubunit immobilization, seems to play an important stabilizing role against distorting agents. In spite of these interesting stabilization factors, immobilization hardly promotes losses of catalytic activity (keeping values near to 90%). This immobilized preparation is able to keep good activity using dextran-NAD(+). In this way, ADH glyoxyl immobilized preparation seems to be suitable to be used as cofactor-recycling enzyme-system in interesting NAD(+)-mediated oxidation processes, catalyzed by other immobilized dehydrogenases in stirred tank reactors.  相似文献   

5.
Acid phosphatase (othophosphoric monoester phosphohydrolase (acid optimum), EC 3.1.3.2) from the human prostate was immobilized by its protein moiety on cyanogen bromide-activated Sepharose, by carbohydrate moiety on Concanavalin-A-Sepharose, and by Schiff base formation with partially oxidized carbohydrate groups on ethylenediamine-Sepharose. The highest retention of enzyme activity, 80%, was found for the noncovalent immobilization on Concanavalin-A-Sepharose. It was demonstrated that the optimal pH changes for the Concanavalin-A-Sepharose and CNBr-Sepharose-enzyme complexes are electrostratic in character. In all cases of immobilization the enzyme has higher thermostability than that for the native enzyme under the same conditions. The effects of the enzyme stabilization were interpreted in terms of the multipoint interaction between the enzyme molecule and the carrier.  相似文献   

6.
Summary The hydrazide derivative of polyacrylate-coated glass was used for the immobilization of glucose oxidase (GO) from Penicillium vitale after periodate oxidation of its carbohydrate moiety. Periodate oxidation of the carbohydrate residues did not influence catalytic activity of the enzyme. Immobilized GO is extremely stable both at 4°C and 25°C for extended period.  相似文献   

7.
Frog epidermis tyrosinase has been immobilized on Enzacryl-AA (a polyacrylamide-based support) and CPG(zirclad)-Arylamine (a controlled pore glass support) in order to stabilize the tyrosine hydroxylase activity of the enzyme; in this way, the immobilized enzyme could be used to synthesize L-dopa from L-tyrosine. The activity immobilization yield Y(IME) (act) (higher than 86%), coupling efficiency (up to 90%), storage stability (no loss in 120 days), and reaction stability (t(1/2) was higher than 20 h in column reactors) were measured for tyrosinase after its immobilization. The results showed a noticeable improvement (in immobilization yield, coupling efficiency, and storage and operational stabilities) over previous reports in which tyrosinase was immobilized for L-dopa production. The activity and stability of immobilized enzyme preparations working in three different reactor types have been compared when used in equivalent conditions with respect to a new proposed parameter of the reactor (R(p)), which allows different reactor configurations to be related to the productivity of the reactor during its useful life time. The characteristic reaction inactivation which soluble tyrosinase shows after a short reaction time has been avoided by immobilization, and the stabilization was enhanced by the presence of ascorbate. However, another inactivation process appeared after a prolonged use of the immobilized enzyme. The effects of reactor type and operating conditions on immobilized enzyme activity and stability are discussed.  相似文献   

8.
The immobilization of the enzymes citrate lyase, malate dehydrogenase, isocitrate dehydrogenase and lactate dehydrogenase to CIM monolithic supports was performed. The long-term stability, reproducibility, and linear response range of the immobilized enzyme reactors were investigated along with the determination of the kinetic behavior of the enzymes immobilized on the CIM monoliths. The Michaelis-Menten constant K(m) and the turnover number k(3) of the immobilized enzymes were found to be flow-unaffected. Furthermore, the K(m) values of the soluble and immobilized enzyme were found to be comparable. Both facts indicate the absence of a diffusional limitation in immobilized CIM enzyme reactors.  相似文献   

9.
Immobilized cell and enzyme hollow fiber reactors have been developed for a variety of biochemical and biomedical applications. Reported mathematical models for predicting substrate conversion in these reactors have been limited in accuracy because of the use of free-solution kinetic parameters. This paper describes a method for determining the intrinsic kinetics of enzymes immobilized in hollow fiber reactor systems using a mathematical model for diffusion and reaction in porous media and an optimization procedure to fit intrinsic kinetic parameters to experimental data. Two enzymes, a thermophilic beta-galactosidase that exhibits product inhibition and L-lysine alpha-oxidase, were used in the analysis. The intrinsic kinetic parameters show that immobilization enhanced the activity of the beta-galactosidase while decreasing the activity of L-lysine alpha-oxidase. Both immobilized enzymes had higher Km values than did the soluble enzyme, indicating less affinity for the substrate. These results are used to illustrate the significant improvement in the ability to predict substrate conversion in hollow fiber reactors.  相似文献   

10.
Non-denaturing electrophoresis can be used to screen enzymes that self-regulate their activities by using a combination of enzymes and their inhibitors. Furthermore, this technique can be applied to develop enzyme reactors that self-regulate their activities. After separation of proteins from mouse liver cytosol by non-denaturing isoelectric focusing, lactate dehydrogense (LDH) and esterase activities were qualitatively and quantitatively examined using a combination of two-dimensional electrophoresis (2-DE) and non-denaturing stacking gel electrophoresis. Activities of mouse liver-derived LDH and carboxylesterase were reversibly inhibited by oxamate and 6,9-diamino-2-ethoxyacridine (acrinol), respectively, in the stacking gels and recovered when the enzymes migrated towards the separation gels. After separation and immobilization of the enzymes, their activities were inhibited by inhibitors and recovered after inhibitor removal. These results indicate that non-denaturing electrophoresis can be applied to select enzymes that self-regulate their activities and subsequently aid in the development of enzyme reactors that can control the enzyme activities.  相似文献   

11.
The characteristics of urease and NAD glycohydrolase, immobilized on different matrices through linkage with polyclonal antibodies, were studied for their use as enzyme reactors. The stability of the derivatives was enhanced by immobilization but some leakage of activity was found, due to the equilibrium between the free and bound enzyme. The release of the enzyme to the solution depends on the affinity constant of the antibodies and the concentration of the substrate circulating in the reactor. On the other hand the main advantage of this easy method of immobilization is the low cost replacement of the inactive enzyme with fresh catalyst.  相似文献   

12.
The aim of this study was to evaluate the immobilization of lipase from Candida rugosa on a nylon support by methods used to attach biomolecules to solid supports through their carbohydrate moieties. The carbohydrate groups were converted to dialdehydes by treatment with sodium periodate. The length of exposure and the periodate amount were optimized to the point where almost total activity retention was obtained. Tests of the immobilized enzyme showed the expressed activity to be significantly higher than the activity obtained with the unimmobilized enzyme. The use of reverse micelles as a way of delivering water to the enzyme was tested and found to give significantly higher activities. The immobilized enzyme activity was also tested with other substrates, one of which was a chiral ester. The immobilized enzyme was found to have high stereoselective efficiency and activity toward racemic methyl methoxyphenyl glycidate, a chiral intermediate used in the manufacture of the drug diltiazem. (c) 1996 John Wiley & Sons, Inc.  相似文献   

13.
Enzymes on carriers can be easily recycled or used in fixed bed reactors. The immobilization often results in an improved stability. Depending on the support used and the method of coupling, this is a time‐consuming process. While the wide applicability of microwaves (MWs) within organic synthesis is known since the 1980s, proteins (including enzymes) are generally considered as too sensitive toward MW irradiation. In this article, MW methods were investigated to improve the processing speed of covalent enzyme immobilization on inorganic supports. Herein two laccases from Trametes versicolor and Myceliophthora thermophilia (Novozyme 51003®) and the glucose oxidase from Aspergillus niger were immobilized onto samples of ceramic honeycomb and porous glass (TRISOPERL® 1000 AMINO). The enzymes showed different sensitivity to MW irradiation, but all were suitable for MW‐assisted immobilization. Subsequent stability tests were conducted to compare conventional immobilization methods with those with MW irradiation. The glucose oxidase provided the best results. For all cases, a successful MW irradiation assisted covalent enzyme immobilization on solid support was obtained with a total 20‐fold reduction of the time necessary.  相似文献   

14.
In the modern era, the use of sustainable, environmentally friendly alternatives for removal of recalcitrant pollutants in streams resulting from industrial processes is of key importance. In this context, biodegradation of phenolic compounds, pharmaceuticals and dyes in wastewater by using oxidoreductases offers numerous benefits. Tremendous research efforts have been made to develop novel, hybrid strategies for simultaneous immobilization of oxidoreductase and removal of toxic compounds. The use of support materials with the options for combining enzyme immobilization with adsorption technology focused on phenolic pollutants and products of biocatalytic conversion seems to be of particular interest. Application of enzymatic reactors based on immobilized oxidoreductases for coupling enzyme-aided degradation and membrane separation also attract still growing attention. However, prior selection of the most suitable support/sorbent material and/or membrane as well as operational mode and immobilization technique is required in order to achieve high removal efficiency. Thus, in the framework of this review, we present an overview of the impact of support/sorbent material on the catalytic properties of immobilized enzymes and sorption of pollutants as well as parameters of membranes for effective bioconversion and separation. Finally, future perspectives of the use of processes combining enzyme immobilization and sorption technology as well as application of enzymatic reactors for removal of environmental pollutants are discussed.  相似文献   

15.
A monolith reactor for the synthesis of cephalexin was developed using capillary columns. The micro channel in the monolith reactor was coated with polyaniline (PANI), and penicillin G acylase was aggregated with PANI using 0.5% of glutaraldehyde as a cross-linker. The developed monolith reactor exhibited many advantages over other enzyme reactors such as batch and continuous reactors. It showed fast enzyme reaction rates owing to the decrease in external mass transfer and internal diffusion limitations. The reactor can easily be scaled up by bundling together multiple monolith reactors, enabling a corresponding increase in feed rate. Furthermore, the monolith reactor showed good operational stability, with 95% of its original activity maintained after 48 h of continuous operation. The PANI coating on the surface of the capillary column increased the enzyme immobilization capacity and conversion was increased from 15.4% to 70.6% after PANI coating. The conversion ratio increased to approximately 70.6% with an increase in residence time and reactor length.  相似文献   

16.
The advantages of oriented immobilization of biologically active proteins are good steric accessibilities of active binding sites and increased stability. This not only may help to increase the production of preparative procedures but is likely to promote current knowledge about how the living cells or tissues operate. Protein inactivation starts with the unfolding of the protein molecule by the contact of water with hydrophobic clusters located on the surface of protein molecules, which results in ice-like water structure. Reduction of the nonpolar surface area by the formation of a suitable biospecifc complex or by use of carbohydrate moieties thus may stabilize proteins. This review discusses oriented immobilization of antibodies by use of immobilized protein A or G. The section about oriented immobilization of proteins by use of their suitable antibodies covers immobilization of enzymes utilizing their adsorption on suitable immunosorbents prepared using monoclonal or polyclonal antibodies, preparation of bioaffinity adsorbent for the isolation of concanavalin A and immobilization of antibodies by use of antimouse immunoglobulin G, Fc-specific (i.e. specific towards the constant region of the molecule). In the further section immobilization of antibodies and enzymes through their carbohydrate moieties is described. Oriented immobilization of proteins can be also based on the use of boronate affinity gel or immobilized metal ion affinity chromatography technique. Biotin–avidin or streptavidin techniques are mostly used methods for oriented immobilization. Site-specific attachment of proteins to the surface of solid supports can be also achieved by enzyme, e.g., subtilisin, after introduction a single cysteine residue by site-directed mutagenesis.  相似文献   

17.
A novel approach is described for the synthesis of beds for enzyme reactors. The method is based on the use of artificial antibodies in the form of polyacrylamide gel particles with diameters around 0.1–0.3 mm. These gel particles mimic protein antibodies, raised in experimental animals, in the sense that they selectively recognize and adsorb only the protein present during the preparation of the “antibodies”. The gel antibodies have several advantages over conventional protein antibodies, which can be taken advantage of in the design of enzyme reactors; for instance, if upon prolonged use the immobilized enzyme loses its activity it can easily be replaced by an active enzyme, which is not possible when the enzyme is immobilized via a conventional protein antibody (a new bed with immobilized protein antibodies must be prepared); and equally or more remarkable: the enzyme can be applied in the form of a non-purified extract since the selectivity of the artificial gel antibodies is so high that they will “fish-out” the enzyme, but no other proteins in the extract. In addition, no preconcentration of the enzyme solution is required prior to the immobilization, since the enzyme is enriched at the top of the column upon the application. These unique properties make enzyme reactors based on artificial gel antibodies very attractive, also in process chromatography. The potential application range of the artificial gel antibodies is enormous since the same method for their synthesis can be used independent of the structure and the size of the “antigen”; for instance, renewable biosensors based on gel antibodies for the selective detection of protein biomarkers, as well as pathogenic viruses, bacteria, and spores (for instance Anthrax) should not be difficult to design.  相似文献   

18.
The present study compares the results of three different covalent immobilization methods employed for immobilization of lipase from Candida rugosa on Eupergit® C supports with respect to enzyme loadings, activities and coupling yields. It seems that method yielding the highest activity retention of 43.3% is based on coupling lipase via its carbohydrate moiety previously modified by periodate oxidation. Study of thermal deactivation kinetics at three temperatures (37, 50 and 75 °C) revealed that the immobilization method also produces an appreciable stabilization of the biocatalyst, changing its thermal deactivation profile. By comparison of the t1/2 values obtained at 75 °C, it can be concluded that the lipase immobilized via carbohydrate moiety was almost 2-fold more stable than conventionally immobilized one and 18-fold than free lipase. The immobilization procedure developed is quite simple, and easily reproduced, and provides a promising solution for application of lipase in aqueous and microaqueous reaction system.  相似文献   

19.
Matrix metalloproteinase 8 (MMP-8) has been reported to have a key role in several pathologic conditions, like heart diseases, osteoarthritis, multiple sclerosis, and various other inflammatory conditions. Therefore, there is a great interest regarding the development of MMP-8 selective inhibitors. In the recent years, immobilized enzyme reactors (IMERs) proved to be an efficient alternative to solution-based assays. Besides the recycling of the enzyme, IMER approach allows a simple way to determine affinity data and thus the ranking of inhibiting potency of the compounds under study, especially when coupled to MS. In this study, the immobilization of MMP-8 was investigated in terms of type of support, kinetic parameters, storage and pH stability. Epoxy activated silica resulted the best matrix for the preparation of an immobilized enzyme reactor (IMER) containing human MMP-8. The IMER was successfully used for the online screening of known MMP-8 inhibitors in zonal chromatography and inhibition experiments.  相似文献   

20.
A series of porous polyurethane (PU) microparticles from poly(vinyl alcohol) (PVA) and hexamethylene diisocyanate (HMDI) using different ratios of components were obtained by one step method. Molar compositions of PU microparticles were estimated by determination of nitrogen, isocyanate and hydroxyl groups. PU carriers which were synthesized using optimal initial molar ratios of PVA and HMDI were applied for immobilization of maltogenase (MG) from Bacillus stearothermophilus. Immobilized enzyme exhibited higher catalytic activity and enhanced temperature stability in comparison with the native MG. Maximal loading 7.78 mg/g wet carrier was reached when PU microparticles with initial molar ratio of PVA and HMDI = 1:3 was used as a carrier for immobilization. The high efficiency of immobilization (EI) was obtained using PU microparticles when initial molar ratio of HMDI and PVA was 1:1–1:10. High stability of MG immobilized onto PU microparticles during storage was demonstrated. Immobilized starch hydrolyzing enzyme was successfully tested in batch and column type reactors for hydrolysis of potato starch. MG immobilized onto PU enables easy separation from the reaction medium and reuse of the immobilized preparation over seven reaction cycles in bath operation and at least three cycles in column type reactor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号