首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glutamine synthetase specific activity increases greater than 100-fold during the insulin-mediated differentiation of confluent 3T3-L1 cells into adipocytes. Incubation of the adipocytes for 22 h with 0.5 mM dibutyryl cyclic AMP plus 0.5 mM theophylline, 0.2 mM 8-bromo-cyclic AMP, 10 micro M epinephrine, or 1 microgram of alpha 1-24 adrenocorticotropic hormone/ml decreased glutamine synthetase by greater than 60%. During the same incubation period, there was no effect of these compounds on protein or on the specific activities of glucose-6-P dehydrogenase or hexokinase. In the presence of 0.5 mM theophylline, the dibutyryl cyclic AMP-mediated decrease in glutamine synthetase activity was half-maximal at 50 micro M dibutyryl cyclic AMP. Furthermore, between 10 micro M and 5 mM dibutyryl cyclic AMP, the dibutyryl cyclic AMP-mediated decrease in glutamine synthetase was similar in the absence or presence of 1 microgram of insulin/ml. Immunotitration of glutamine synthetase activity from 3T3 adipocytes indicates that the dibutyryl cyclic AMP-mediated decrease in the activity is due to a decrease in the cellular content of glutamine synthetase molecules. We studied the effects of dibutyryl cyclic AMP on the synthesis and degradation of glutamine synthetase. Synthesis rate was estimated from the incorporation of L-[35S]methionine into glutamine synthetase during a 60-min incubation period. Degradation rate was estimated from the first order disappearance of radioactivity from glutamine synthetase in 3T3 adipocytes previously incubated with L-[35S]methionine. Glutamine synthetase was isolated by immunoprecipitation followed by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Incubation of 3T3 adipocytes with dibutyrl cyclic AMP resulted in a rapid decline in the apparent synthesis rate of glutamine synthetase. In addition, dibutyryl cyclic AMP treatment increased the initial rate of glutamine synthetase degradation. The half-life of glutamine synthetase was 24.5 h in control cultures and 16 h in dibutyryl cyclic AMP-treated cultures. In contrast, dibutyryl cyclic AMP had little effect on the synthesis or degradation of soluble protein. Our data indicate that the dibutyryl cyclic AMP-mediated decrease in 3T3 adipocyte glutamine synthetase activity results from a decrease in the synthesis rate and an increase in the initial degradation rate of the enzyme.  相似文献   

2.
Prostaglandin biosynthesis and prostaglandin-stimulated cyclic AMP accumulation were studied in 3T3-L1 fibroblasts as they differentiated into adipocytes. Incubation of 3T3-L1 membranes with [1-14C]prostaglandin H2, and subsequent radio-TLC analysis, showed that prostacyclin (prostaglandin I2) is the principal enzymatically synthesized prostaglandin in this cell line. Confirmation of the radiochemical data was obtained by demonstrating the presence of 6-keto-prostaglandin F1 alpha, the stable hydrolysis product of prostaglandin I2, by gas chromatography-mass spectrometry. In support of previous work, indomethacin, the prostaglandin endoperoxide synthetase (EC 1.14.99.1) inhibitor, accelerated 3T3-L1 differentiation. More importantly, the incubation of 3T3-L1 cells with insulin and the prostaglandin I2 synthetase inhibitor 9,11-azoprosta-5,13-dienoic acid (azo analog I) also enhanced the rate of cellular differentiation, even though this compound does not inhibit the synthesis of other prostaglandins. The repeated addition of exogenous prostaglandin I2 to 3T3-L1 cells inhibited insulin- and indomethacin-mediated differentiation. When 3T3-L1 cells were exposed to various prostaglandins and the cyclic AMP levels were measured, prostaglandin I2 proved to be the most potent stimulator of cyclic AMP accumulation, followed by prostaglandin E1 greater than prostaglandin H2 much greater than prostaglandin E2, while prostaglandin D2 was inactive. As 3T3-L1 cells differentiate, the ability of prostaglandin I2 or prostaglandin H2 to stimulate cyclic AMP accumulation progressively diminishes. It is suggested that 3T3-L1 differentiation may be controlled by the rate of prostaglandin I2 synthesis and/or sensitivity of the adenylate cyclase to prostaglandin I2.  相似文献   

3.
The endogenous protein phosphorylation stimulated by catecholamines was compared in 3T3-L1 preadipocytes and adipocytes. Phosphorylation of a protein with an approximate molecular weight of 57,000 was stimulated both in preadipocytes and adipocytes of 3T3-L1. Stimulated phosphorylation of four other proteins with approximate molecular weights of 90,000, 62,000, 48,000, and 32,000 was observed only in 3T3-L1 adipocytes. All of these proteins appeared to be localized in the microsomal fraction. Phosphorylation of these proteins was stimulated by norepinephrine, epinephrine, isoproterenol, dibutyryl cyclic AMP, theophylline, or 1-methyl-3-isobutylxanthine, but not by A23187. Among the phosphorylated proteins in 3T3-L1 adipocytes, the 62,000 dalton protein was most evident. Using this protein as a marker, it appeared that epinephrine and norepinephrine were effective in stimulating the phosphorylation at the same concentration range. This result was in clear contrast to the different affinities of these catecholamines for beta-receptors of 3T3-L1 adipocytes reported by Lai, Rosen, and Rubin (J. Biol. Chem. (1982) 257, 6691-6696). The phosphorylation of the 62,000 dalton protein in 3T3-L1 adipocytes was observed 1 min after the addition of norepinephrine, and dephosphorylation was observed within 10 min after the addition of propranolol.  相似文献   

4.
The aim of this study was to determine whether cyclic AMP (cAMP) pathways alter the nitric oxide (NO) production mediated by inducible NO synthase (iNOS) in adipocytes. The treatment of 3T3-L1 cells, a model of white adipocytes, with the combination of lipopolysaccharide (L), tumor necrosis factor-alpha (T), and interferon-gamma (I) synergistically induced iNOS, leading to the production of NO. Enhancers of intracellular cAMP (dibutyryl cAMP, forskolin, and IBMX) inhibited the NO production elicited by LTI, whereas H89, a specific inhibitor of PKA, stimulated the NO production in 3T3-L1 cells. In rat brown adipocyte cell line, the combined treatment with LT synergistically elicited the NO production, and the cAMP analogues further enhanced it. Forskolin inhibited the NO production in 3T3-L1 cells, but enhanced it in brown adipocytes, in a dose-dependent manner. The changes in NO production paralleled the change in iNOS mRNA and protein level in both cell types. The activation of NF-kappaB by LTI/LT was blocked in 3T3-L1 cells, but enhanced in brown adipocytes, by the co-treatment with cAMP analogues. The protein level of 1-kappaBalpha, a NF-kappaB stabilizer, changed reciprocally to that of NF-kappaB activity in each cell type. These results suggest that cAMP regulates iNOS expression in adipocytes through modulating NF-kappaB activity. The differential regulation of iNOS in 3T3-L1 cells from that in the brown adipocytes indicates that intracellular signal pathways activated by cAMP are different between the cell types.  相似文献   

5.
Exposure of 3T3-L1 adipocytes to 100 ng/ml of cholera toxin or 1 mM dibutyryl cyclic AMP caused a marked stimulation of deoxyglucose transport. A maximal increase of 10- to 15-fold was observed after 12-24 h of exposure, while 100 nM insulin elicited an increase of similar magnitude within 30 min. A short term exposure (4 h) of cells to cholera toxin or dibutyryl cyclic AMP resulted in a 3- to 4-fold increase in deoxyglucose transport which was associated with significant redistribution of both the HepG2/erythrocyte (GLUT1) and muscle/adipocyte (GLUT4) glucose transporters from low density microsomes to the plasma membrane fraction. Total cellular amounts of both transporter proteins remained constant. In contrast, cells exposed to cholera toxin or dibutyryl cyclic AMP for 12 h exhibited elevations in total cellular contents of GLUT1 (but not GLUT4) protein to about 1.5- and 2.5-fold above controls, respectively. Although such treatments of cells with cholera toxin (12 h) versus insulin (30 min) caused similar 10-fold enhancements of deoxyglucose transport, a striking discrepancy was observed with respect to the content of glucose transporter proteins in the plasma membrane fraction. While insulin elicited a 2.6-fold increase in the levels of GLUT4 protein in the plasma membrane fraction, cholera toxin increased the amount of this transporter by only 30%. Insulin or cholera toxin increased the levels of GLUT1 protein in the plasma membrane fraction equally (1.6-fold). Thus, a greater number of glucose transporters in the plasma membrane fraction is associated with transport stimulation by insulin compared to cholera toxin. We conclude that: 1) at early times (4 h) after the addition of cholera toxin or dibutyryl cyclic AMP to 3T3-L1 adipocytes, redistribution of glucose transporters to the plasma membrane appears to contribute to elevated deoxyglucose uptake rates, and 2) the stimulation of hexose uptake after prolonged treatment (12-18 h) of cells with cholera toxin may involve an additional increase in the intrinsic activity of one or both glucose transporter isoforms.  相似文献   

6.
STAT6 is abundantly expressed in 3T3-L1 preadipocytes and adipocytes but activating ligands are not well defined. In this report, we provide evidence that interleukin 4 (IL-4) induced JAK2-mediated STAT6 tyrosine phosphorylation and DNA binding in 3T3-L1 preadipocytes but not in 3T3-L1 adipocytes. Loss of IL-4-mediated STAT6 tyrosine phosphorylation occurred 2 days after preadipocytes were induced to differentiate into adipocytes but when cells remained phenotypically preadipocytes. 3T3-L1 adipocytes were still responsive to IL-4 through tyrosine phosphorylation of other cellular proteins. We conclude that IL-4 signals through STAT6 in 3T3-L1 preadipocytes but not in 3T3-L1 adipocytes. This differentiation-dependent loss of STAT6 activation may be critical for distinct biological effects of IL-4 in 3T3-L1 preadipocytes and adipocytes.  相似文献   

7.
We investigated the effect of insulin on the expression of the enhancer of split- and hairy-related protein-2 gene in 3T3-L1 adipocytes and L6 myotubes. The level of enhancer of split- and hairy-related protein-2 mRNA was increased by insulin in both cells. While both wortmannin and LY294002 blocked the increase in 3T3-L1 adipocytes, and only PD98059 was effective in L6 myotubes. Although the increase by insulin in these cells was inhibited by treatment with actinomycin D, this was enhanced by treatment with cycloheximide. Furthermore, cyclic AMP increased the level of enhancer of split- and hairy-related protein-2 mRNA in both cells in an additive manner. Thus, we conclude that insulin and cyclic AMP induce the expression of the enhancer of split- and hairy-related protein-2 gene in both 3T3-L1 adipocytes and L6 myotubes, and that the gene expression enhanced by insulin is regulated by the cell type-specific pathway. The former requires a phosphoinositide 3-kinase pathway and the latter a mitogen-activated protein kinase pathway.  相似文献   

8.
Cultured human thyroid cells treated with thyrotrophin (TSH) or dibutyryl cyclic AMP release more tri-iodothyronine (T3) and thyroxine (T4) than unsupplemented cells. Column chromatography was used to investigate the secretion of newly-synthesised 125-I labelled T3 and T4 from cells cultured with 125-I and TSH or dibutyryl cyclic AMP. Radioimmunoassays were used to determine total T3 and T4 release from cells cultured with unlabelled iodide.Iodothyronines released after TSH addition contained more 125-I than those released after dibutyryl cyclic AMP. This increase in 125-I was primarily in “new” T4. Release of “new” T3, however, was increased more by dibutyryl cyclic AMP than by TSH. Dibutyryl cyclic AMP and TSH were comparable in their stimulation of total T3 and total T4 release.Interpretation of these observations suggests that TSH and dibutyryl cyclic AMP may differ in some aspects of their in vitro effects on cellular iodination and iodothyronine coupling systems.  相似文献   

9.
3T3-L1 preadipocytes, when treated with 3-isobutyl-1-methylxanthine, dexamethasone, and insulin, differentiate into cells with the morphological and biochemical properties of adipocytes; the closely related 3T3-C2 cells, under identical conditions, exhibit a low frequency of adipocyte conversion. During differentiation, 3T3-L1 preadipocytes acquire an increased responsiveness to certain agonists (e.g. isoproterenol and adrenocorticotropic hormone) that influence lipolysis and lipogenesis through activation of adenylate cyclase, whereas 3T3-C2 cells do not. It has been suggested that changes in hormone responsiveness of 3T3-L1 cells during differentiation result from increased amounts of the guanyl nucleotide-binding protein of adenylate cyclase, as demonstrated by choleragen-catalyzed [32P]ADP ribosylation of 42 and 49-50-kilodalton particulate peptides. Particulate fractions from nondifferentiating 3T3-C2 cells, like those from 3T3-L1 cells, contained choleragen substrates of 42 and 46-47 (doublet) kilodaltons. Incubation of intact 3T3-L1 or 3T3-C2 cells with choleragen prior to preparation of particulate fractions prevented the subsequent in vitro choleragen-dependent [32P]ADP ribosylation of only these peptides. Increased incorporation of radioactivity into both the 42 and 46-47-kilodalton peptides was observed during differentiation of 3T3-L1 cells. However, a similar increase was also observed in nondifferentiating 3T3-C2 cells subjected to the differentiation protocol. Therefore, increased hormone responsiveness of 3T3-L1 adipocytes cannot be explained solely on the basis of increased labeling, and perhaps increased amounts, of the guanyl nucleotide-binding protein.  相似文献   

10.
11.
It has previously been shown that mammary stromal cells possess the ability to maintain a fibroblast-like phenotype or differentiate in vitro into mature adipocytes in a hormone-dependent manner. This paper reports that rat mammary stromal cells can also differentiate into capillary-like structures in vitro when cultured on a reconstituted basement membrane (RBM). The differentiation potential of mammary stromal cells was compared with that of human umbilical vein endothelial cells (HUVEC) and 3T3-L1 preadipocytes. When cultured on plastic, mammary stromal cells, 3T3-L1 and HUVEC maintained a fibroblast-like phenotype. Mammary stromal cells and 3T3-L1, but not HUVEC, differentiated into mature adipocytes when cultured in adipogenic medium. When plated on reconstituted basement membrane, all three cell types began to migrate and organize themselves into an interconnected capillary network. By 18-20 h, mammary stromal cells organized into complex, highly branched capillary-like tubules whereas 3T3-L1 cells and HUVEC formed more simple structures. Cross-sectional analysis demonstrated the presence of an internal lumen. Mammary stromal cells were unique in their ability to progressively develop into a three-dimensional, highly branched network invading the RBM surface. The network formation was enhanced by the presence of vascular endothelial growth factor (VEGF) and was inhibited by the anti-angiogenic drug suramin. Western blotting analysis demonstrated the presence of the endothelial-specific marker flk-1, as well as the presence of the tight-junction-associated protein ZO-1. Mammary stromal cell differentiation into capillary structures was not a terminal state, since these cells were still able to differentiate into adipocytes when exposed to adipogenic medium. These findings suggest that mammary stromal cells differentiate into fibroblasts, adipocytes or vascular structures in a hormone- and substatum-dependent manner, and may explain the dramatic changes in stromal composition during both normal mammary gland development and tumorigenesis.  相似文献   

12.
The effects of PPAR-gamma agonists, thiazolidinediones (TZDs), on preadipocytes isolated from rat mesenteric adipose tissue and murine cell line 3T3-L1 were compared using an in vitro cell culture system. After each cell formed a confluent monolayer under appropriate medial conditions, pioglitazone or troglitazone was applied at 10 microM to each medium for cell maturation. We observed morphological changes in each cell, especially the accumulation of lipid droplets in the cytoplasm, during the culture periods. At the end of culture, DNA content, triglyceride (TG) content and glycerol-3-phosphate dehydrogenase (GPDH) activity were determined. Adiponectin concentrations in each culture medium were also measured during appropriate experimental periods. Application of TZDs increased the DNA content, TG accumulation and GPDH activity in the 3T3-L1 cells but not in the mesenteric adipocytes. Although TG accumulation was unchanged, the number of lipid particles was decreased and the size of lipid particles in the mesenteric adipocytes was increased by TZD application. Although the TZDs increased adiponectin release from the 3T3-L1 cells, adiponectin release from mesenteric adipocytes was suppressed (P<0.05). Thus, the effects of TZDs differed between the primary culture of mesenteric adipose cells and the line cell culture of 3T3-L1 cells. The source of adipocytes is an important factor in determining the action of TZDs in vitro, and particular attention should be paid when evaluating the effect of PPAR-gamma agonists on adipose tissues.  相似文献   

13.
The 3T3-L1 cell line, derived from 3T3 cells, is widely used in biological research on adipose tissue. 3T3-L1 cells have a fibroblast-like morphology, but, under appropriate conditions, they differentiate into an adipocyte-like phenotype. During the differentiation process, 3T3-L1 cells increase the synthesis of triglycerides and acquire the behavior of adipose cells. In particular, triglycerides accumulate in lipid droplets (LDs) embedded in the cytoplasm. The number and the size distribution of the LDs is often correlated with obesity and many other pathologies linked with fat accumulation. The integrated optical density (IOD) of the LDs is related with the amount of triglycerides in the droplets. The aim of this study is the attempt to characterize the size distribution and the IOD of the LDs in 3T3-L1 differentiated cells. The cells were differentiated into adipocytes for 5 days with a standard procedure, stained with Oil Red O and observed with an optical microscope. The diameter, area, optical density of the LDs were measured. We found an asymmetry of the kernel density distribution of the maximum Feret’s diameter of the LDs with a tail due to very large LDs. More information regarding the birth of the LDs could help in finding the best mathematical model in order to analyze fat accumulation in adipocytes.Key words: Lipid droplet, 3T3-L1, adipocyte, fat, triglyceride accumulation, integrated optical density  相似文献   

14.
Various saturated and unsaturated fatty acids were included in the culture medium to test their effects on lipolysis in 3T3-L1 adipocytes. Following prolonged incubation, only oleate was found to exert enhancing effect on basal and isoproterenol-stimulated lipolysis. The effect of oleate was concentration-dependent and was accompanied with increased intracellular cAMP content. Furthermore, the lipolytic response induced by isobutyl-methylxanthine, forskolin or dibutyryl cAMP was also increased in adipocytes treated with oleate. Thus, it appears that in addition to an increased cAMP accumulation, a step distal to cAMP production in the cells may be involved in inducing enhanced lipolysis in 3T3-L1 adipocytes by prolonged exposure to oleate.  相似文献   

15.
16.
目的:通过培养3T3-L1前脂肪细胞,并诱导其分化至成熟,研究游离脂肪酸对脂肪细胞糖代谢的影响。方法:培养诱导3T3-L1脂肪细胞,用油红O染色鉴定并比较其形态结构的变化。LPS、EPA、SA、PA干预成熟脂肪细胞,收集不同时间的培养基,葡萄糖氧化酶法算出各组脂肪细胞的葡萄糖消耗量。用Western blot检测不同时间各组干预后细胞AMPK、GLUT4蛋白含量。结果:油红O染色鉴定成熟脂肪细胞胞浆中的脂滴染成红色,并出现戒环样结构;诱导分化第8天,90%以上细胞均分化成熟。含LPS、EPA、SA、PA的培养基作用于成熟脂肪细胞,随着时间的延长,显著抑制脂肪细胞对葡萄糖的吸收(P<0.05),同时,脂肪细胞AMPK、GLUT4蛋白含量在减少(P<0.05)。结论:游离脂肪酸可以诱导胰岛素抵抗的分子机制可能是通过胰岛素信号通路激活蛋白激酶(AMPK),进而影响GLUT4的蛋白表达,使脂肪细胞的葡萄糖吸收率减低,影响脂肪细胞的糖代谢。  相似文献   

17.
We have established a novel preadipocyte cell line from mouse adult mature adipocytes. The mature adipocytes were isolated from fat tissues by taking only the floating population of mature fat cells. The isolated mature adipocytes were de-differentiated into fibroblast-like cells. The in vitro studies showed that the cells could re-differentiate into mature adipocytes after over 20 passages. The in vivo transplantation study also demonstrated that the cells had the full potential to differentiate into mature adipocytes, which has not been shown for the 3T3-L1 preadipocyte cell line derived from mouse embryo. We have further analyzed the expression profile of key fat regulatory genes such as the peroxisome proliferator-activated receptorgamma or CCAAT/enhancer-binding protein gene families. We conclude that our cell line could be used as a preferred alternative to 3T3-L1, potentially reflecting the characteristics of mature adipocytes more, since the cell line is actually derived from adult mature adipocytes.  相似文献   

18.
A long-term goal of this research is to develop an in vitro model to study the metabolism, distribution, and fate of chemicals or pharmaceuticals in animals and humans. An important component of such a system is an in vitro model to study bioaccumulation of specific chemicals in adipose tissue. Due to the difficulties in maintaining primary adipocytes in culture and conducting reproducible experiments, transformed adipocyte cell lines have been used as an alternative. In this paper, several rodent preadipocyte cell lines (3T3-L1, 3T3-F442A, and TA1 cells) that differentiate into adipocytes when exposed to the appropriate stimuli are tested as an investigative tool to study naphthalene accumulation. The in vitro model is tested by comparison of its performance to that of primary adipocytes. All the experimental evidence supports the hypothesis that naphthalene accumulation is primarily dependent on the level of intracellular lipid. Furthermore, the level of naphthalene bioaccumulation is linearly correlated with the amount of triglyceride content with the slope of 37.7 +/- 0.5 microg of naphthalene/(mg of triglyceride). Indomethacin/dexamethasone/insulin are shown to be more effective in promoting preadipocyte differentiation than methylisobutylxanthine/dexamethasone/insulin. Additionally, external factors, such as the presence of albumin and serum in the medium, affect the cellular naphthalene uptake by decreasing the amount of naphthalene transported into fat cells. Among the three cell lines tested, 3T3-L1 adipocytes accumulated the highest intracellular lipid and, hence, yielded the highest level of naphthalene accumulation. Its ability to accumulate naphthalene is comparable to that of primary adipocytes. The 3T3-L1 adipocyte model is appropriate for studying the bioaccumulation of xenobiotics that are aromatic hydrocarbons.  相似文献   

19.
Cancer-associated cachexia (CAC) constitutes a metabolic dysfunction characterized by systemic inflammation and body weight loss. Muscle atrophy and adipose tissue lipolysis might explain weight loss in CAC. Specific functions of numerous hormones and cytokines derived from tumours can provoke cachexia. Extracellular vesicles (EVs) can be involved in intercellular communication. However, whether EVs participate in this process has not been investigated thoroughly. Using Lewis lung carcinoma (LLC) cell cultures, we tested whether LLC-derived EVs induced C2C12 myotube atrophy and 3T3-L1 adipocyte lipolysis. EVs derived from LLC cells and serum from patients with lung cancer, non-lung cancer controls, tumour-bearing mice, and non-tumour-bearing control mice were isolated and characterized biochemically and biophysically. LLC cell-derived EVs induced dose-dependent effects of atrophy in C2C12 myotubes and lipolysis in 3T3-L1 adipocytes. Mechanistically, EVs directly fused with target C2C12 myotubes and 3T3-L1 adipocytes, and transferred interleukin-6 (IL-6) activates the STAT3 signalling pathway in C2C12 myotubes and 3T3-L1 adipocytes. Neutralization of extracellular IL-6 prevented the atrophy and lipolysis effects of EVs. Inhibiting the STAT3 signalling pathway also prevented the atrophy and lipolysis effects of EVs. PKH67-labelled (PKH 67 is a lipid dye that can be used to label extracellular vesicles) LLC-EVs were readily internalized into myotubes and adipocytes. Our data showed that LLC cell-derived EVs induced myotube atrophy and adipocyte lipolysis via the extracellular IL-6-mediated STAT3 pathway in target cells. These findings represent a potentially novel basis for further research in this field towards identifying targets and developing strategies for maintaining weight in CAC.  相似文献   

20.
In this note, we present a detailed procedure for highly effective and reproducible 3T3-L1 cell differentiation. Due to their potential to differentiate from fibroblasts to adipocytes, 3T3-L1 cells are widely used for studying adipogenesis and the biochemistry of adipocytes. However, using different kits and protocols published so far, we were not able to obtain full differentiation of the currently available American Type Culture Collection (ATCC) 3T3-L1 cell lots. Using rosiglitazone (2 μM) as an additional prodifferentiative agent, we achieved apparently complete differentiation of 3T3-L1 cells within 10 to 12 days that persisted for at least up to cell culture passage 10.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号