首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
c-Src is phosphorylated at specific serine and threonine residues during mitosis in fibroblastic and epithelial cells. These sites are phosphorylated in vitro by the mitotic kinase Cdk1 (p34(cdc2)). In contrast, c-Src in Y79 human retinoblastoma cells, which are of neuronal origin, is phosphorylated at one of the mitotic sites, Ser75, throughout the cell cycle. The identity of the serine kinase that nonmitotically phosphorylates c-Src on Ser75 remains unknown. We now are able to show for the first time that Cdk5 kinase, which has the same consensus sequence as the Cdk1 and Cdk2 kinases, is required for the phosphorylation in asynchronous Y79 cells. The Ser75 phosphorylation was inhibited in a dose-dependent manner by butyrolactone I, a specific inhibitor of Cdk5-type kinases. Three stable subclones that have almost no kinase activity were selected by transfection of an antisense Cdk5-specific activator p35 construct into Y79 cells. The loss of the kinase activity caused an approximately 85% inhibition of the Ser75 phosphorylation. These results present compelling evidence that Cdk5/p35 kinase is responsible for the novel phosphorylation of c-Src at Ser75 in neuronal cells, raising the intriguing possibility that c-Src acts as an effector of Cdk5/p35 kinase during neuronal development.  相似文献   

2.
Focal adhesion kinase (FAK) is an important regulator of integrin signaling in adherent cells and accordingly its activity is significantly modulated during mitosis when cells detach from the extracellular matrix. During mitosis, FAK becomes heavily phosphorylated on serine residues concomitant with its inactivation and dephosphorylation on tyrosine. Little is known about the regulation of FAK activity by serine phosphorylation. In this report, we characterize two novel sites of serine phosphorylation within the C-terminal domain of FAK. Phosphorylation-specific antibodies directed to these sites and against two previously characterized sites of serine phosphorylation were used to study the regulated phosphorylation of FAK in unsynchronized and mitotic cells. Among the four major phosphorylation sites, designated pS1-pS4, phosphorylation of pS1 (Ser722) is unchanged in unsynchronized and mitotic cells. In contrast, pS3 and pS4 (Ser843 and Ser910) exhibit increased phosphorylation during mitosis. In vitro peptide binding experiments provide evidence that phosphorylation of pS1 (Ser722) may play a role in modulating FAK binding to the SH3 domain of the adapter protein p130(Cas).  相似文献   

3.
4.
The ras-like GTP binding protein rab4 is the only known rab protein on endosomes that is phosphorylated during mitosis. Since a large fraction of rab4 accumulates in the cytosol in mitotic cells, we investigated the molecular mechanism controlling membrane association of rab4. We first show that human rab4 is phosphorylated by recombinant mammalian p34cdc2 kinase in vitro. Next, the actual site of phosphorylation and its functional significance were determined using stably transfected CHO cell lines producing high levels of wild type rab4 or rab4 mutants bearing alterations at Ser196, which occurs within a consensus site for p34cdc2 kinase phosphorylation (S196PRR). Mutation of Ser196 to glutamine or aspartic acid completely prevented rab4 phosphorylation in mitotic cells and also blocked its appearance in the cytosol. Neither C-terminal isoprenylation nor carboxymethylation of rab4 was affected by the mutations or by phosphorylation. Finally, dephosphorylation and reassociation of soluble rab4 with membranes occurred upon exit of cells from mitosis. Thus, phosphorylation of Ser196 is directly responsible for the reversible translocation of rab4 into the cytosol of mitotic cells.  相似文献   

5.
Glial fibrillary acidic protein (GFAP) is a component of glial filaments specific to astroglia. We now report the spatial and temporal distributions of four phosphorylated sites in the GFAP molecule during mitosis of astroglial cells, determined by antibodies which can distinguish phosphorylated epitopes from non-phosphorylated-epitopes. Immunofluorescence microscopy showed that the Ser8 residues in the entire cytoplasmic glial filament system are initially phosphorylated when the cells enter mitosis. In cytokinesis, the phosphoSer8 residues become dephosphorylated, whereas Thr7, Ser13 and Ser34 in glial filaments at the cleavage furrow become the preferred sites of phosphorylation. The cdc2 kinase purified from mitotic cells can phosphorylate GFAP at Ser8 but not at Thr7, Ser13 or Ser34, in vitro. These results suggest that cdc2 kinase acts as a glial filament kinase only at the G2-M phase transition while other glial filament kinases are probably activated at the cleavage furrow before final separation of the daughter cells.  相似文献   

6.
We have previously shown that overexpressed chicken pp60c-src has retarded mobility, novel serine/threonine phosphorylation, and enhanced kinase activity during NIH 3T3 cell mitosis. Here we show that novel mitotic phosphorylations occur at Thr 34, Thr 46, and Ser 72. The possibility, previously raised, that Ser 17 is dephosphorylated during mitosis is excluded. The phosphorylated sites lie in consensus sequences for phosphorylation by p34cdc2, the catalytic component of maturation promoting factor (MPF). Furthermore, highly purified MPF from metaphase-arrested Xenopus eggs phosphorylated both wild-type and kinase-defective pp60c-src at these sites. Altered phosphorylation alone is sufficient to account for the large retardation in mitotic pp60c-src electrophoretic mobility: phosphorylation of normal pp60c-src by MPF retarded mobility and dephosphorylation of mitotic pp60c-src restored normal mobility. These results suggest that pp60c-src is one of the targets for MPF action, which may account in part for the pleiotropic changes in protein phosphorylation and cellular architecture that occur during mitosis.  相似文献   

7.
Condensin I, which plays an essential role in mitotic chromosome assembly and segregation in vivo, constrains positive supercoils into DNA in the presence of adenosine triphosphate in vitro. Condensin I is constitutively present in a phosphorylated form throughout the HeLa cell cycle, but the sites at which it is phosphorylated in interphase cells differ from those recognized by Cdc2 during mitosis. Immunodepletion, in vitro phosphorylation, and immunoblot analysis using a phospho-specific antibody suggested that the CK2 kinase is likely to be responsible for phosphorylation of condensin I during interphase. In contrast to the slight stimulatory effect of Cdc2-induced phosphorylation of condensin I on supercoiling, phosphorylation by CK2 reduced the supercoiling activity of condensin I. CK2-mediated phosphorylation of condensin I is spatially and temporally regulated in a manner different to that of Cdc2-mediated phosphorylation: CK2-dependent phosphorylation increases during interphase and decreases on chromosomes during mitosis. These findings are the first to demonstrate a negative regulatory mode for condensin I, a process that may influence chromatin structure during interphase and mitosis.  相似文献   

8.
9.
The dual-specificity protein kinase Mps1 (monopolar spindle 1) is a phosphoprotein required for error-free mitotic progression in eukaryotes. In the present study, we have investigated human Mps1 phosphorylation using combined mass spectrometric, mutational and phosphospecific antibody approaches. We have identified 16 sites of Mps1 autophosphorylation in vitro, several of which are required for catalytic activity after expression in bacteria or in cultured human cells. Using novel phosphospecific antibodies, we show that endogenous Mps1 is phosphorylated on Thr(686) and Ser(821) during mitosis, and demonstrate that phosphorylated Mps1 localizes to the centrosomes of metaphase cells. Taken together, these results reveal the complexity of Mps1 regulation by multi-site phosphorylation, and demonstrate conclusively that phosphorylated Mps1 associates with centrosomes in mitotic human cells.  相似文献   

10.
Human DNA topoisomerase I (topo I) catalyzes DNA relaxation and phosphorylates SRSF1. Whereas the structure of topo I complexed with DNA has been resolved, the structure of topo I in the complex with SRSF1 and structural determinants of topo I activities in this complex are not known. The main obstacle to resolving the structure is a contribution of unfolded domains of topo I and SRSF1 in formation of the complex. To overcome this difficulty, we employed a three-step strategy: identifying the interaction regions, modeling the complex, and validating the model with biochemical methods. The binding sites in both topo I and SRSF1 are localized in the structured regions as well as in the unfolded domains. One observes cooperation between the binding sites in topo I but not in SRSF1. Our results indicate two features of the unfolded RS domain of SRSF1 containing phosphorylated residues that are critical for the kinase activity of topo I: its spatial arrangement relative to topo I and the organization of its sequence. The efficiency of phosphorylation of SRSF1 depends on the length and flexibility of the spacer between the two RRM domains that uniquely determine an arrangement of the RS domain relative to topo I. The spacer also influences inhibition of DNA nicking, a prerequisite for DNA relaxation. To be phosphorylated, the RS domain has to include a short sequence recognized by topo I. A lack of this sequence in the mutants of SRSF1 or its spatial inaccessibility in SRSF9 makes them inadequate as topo I/kinase substrates.  相似文献   

11.
Inhibitor-2 (I-2) is a regulator of protein phosphatase type-1 (PP1), known to be phosphorylated in vitro by multiple kinases. In particular Thr72 is a Thr-Pro phosphorylation site conserved from yeast to human, but there is no evidence that this phosphorylation responds to any physiological signals. Here, we used electrophoretic mobility shift and immunoblotting with a site-specific phospho-Thr72 antibody to establish Thr72 phosphorylation in HeLa cells and show a 25-fold increase in phosphorylation during mitosis. Mass spectrometry demonstrated I-2 in actively growing HeLa cells was also phosphorylated at three other sites, Ser120, Ser121, and an additional Ser located between residues 70 and 90. In vitro kinase assays using recombinant I-2 as a substrate showed that the Thr72 kinase(s) was activated during mitosis, and sensitivity to kinase inhibitors indicated that the principal I-2 Thr72 kinase was not GSK3 but instead a member of the cyclin-dependent protein kinase family. Immunocytochemistry confirmed Thr72 phosphorylation of I-2 during mitosis, with peak intensity at prophase, and revealed subcellular concentration of the phospho-Thr72 I-2 at centrosomes. Together, the data show dynamic changes in I-2 phosphorylation during mitosis and localization of phosphorylated I-2 at centrosomes, suggesting involvement in mammalian cell division.  相似文献   

12.

Background

The appropriate control of mitotic entry and exit is reliant on a series of interlocking signaling events that coordinately drive the biological processes required for accurate cell division. Overlaid onto these signals that promote orchestrated cell division are checkpoints that ensure appropriate mitotic spindle formation, a lack of DNA damage, kinetochore attachment, and that each daughter cell has the appropriate complement of DNA. We recently discovered that AMP-activated protein kinase (AMPK) modulates the G2/M phase of cell cycle progression in part through its suppression of mammalian target of rapamycin (mTOR) signaling. AMPK directly phosphorylates the critical mTOR binding partner raptor inhibiting mTORC1 (mTOR-raptor rapamycin sensitive mTOR kinase complex 1). As mTOR has been previously tied to mitotic control, we examined further how raptor may contribute to this process.

Methodology/Principal Findings

We have discovered that raptor becomes highly phosphorylated in cells in mitosis. Utilizing tandem mass spectrometry, we identified a number of novel phosphorylation sites in raptor, and using phospho-specific antibodies demonstrated that raptor becomes phosphorylated on phospho-serine/threonine-proline sites in mitosis. A combination of site-directed mutagenesis in a tagged raptor cDNA and analysis with a series of new phospho-specific antibodies generated against different sites in raptor revealed that Serine 696 and Threonine 706 represent two key sites in raptor phosphorylated in mitosis. We demonstrate that the mitotic cyclin-dependent kinase cdc2/CDK1 is the kinase responsible for phosphorylating these sites, and its mitotic partner Cyclin B efficiently coimmunoprecipitates with raptor in mitotic cells.

Conclusions/Significance

This study demonstrates that the key mTOR binding partner raptor is directly phosphorylated during mitosis by cdc2. This reinforces previous studies suggesting that mTOR activity is highly regulated and important for mitotic progression, and points to a direct modulation of the mTORC1 complex during mitosis.  相似文献   

13.
Topoisomerases alter DNA topology and are vital for the maintenance of genomic integrity. Topoisomerases I and II are also targets for widely used antitumor agents. We demonstrated previously that in the human leukemia cell line, HL-60, resistance to topoisomerase (topo) II-targeting drugs such as etoposide is associated with site-specific hypophosphorylation of topo II alpha. This effect can be mimicked in sensitive cells treated with the intracellular Ca(2+) chelator, 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA-AM). Here we identify Ser-1106 as a major phosphorylation site in the catalytic domain of topo II alpha. This site lies within the consensus sequence for the acidotrophic kinases, casein kinase I and casein kinase II. Mutation of serine 1106 to alanine (S1106A) abrogates phosphorylation of phosphopeptides that were found to be hypophosphorylated in resistant HL-60 cells or sensitive cells treated with BAPTA-AM. Purified topo II alpha containing a S1106A substitution is 4-fold less active than wild type topo II alpha in decatenating kinetoplast DNA and also exhibits a 2-4-fold decrease in the level of etoposide-stabilized DNA cleavable complex formation. Saccharomyces cerevisiae (JN394t2-4) cells expressing S1106A mutant topo II alpha protein are more resistant to the cytotoxic effects of etoposide or amsacrine. These results demonstrate that Ca(2+)-regulated phosphorylation of Ser-1106 in the catalytic domain of topo II alpha modulates the enzymatic activity of this protein and sensitivity to topo II-targeting drugs.  相似文献   

14.
During mitosis, global translation is suppressed, while synthesis of proteins with vital mitotic roles must go on. Prior evidence suggests that the mitotic translation shift involves control of initiation. Yet, no signals specifically targeting translation initiation factors during mitosis have been identified. We used phosphoproteomics to investigate the central translation initiation scaffold and “ribosome adaptor,” eukaryotic initiation factor 4G1 (eIF4G1) in interphase or nocodazole-arrested mitotic cells. This approach and kinase inhibition assays, in vitro phosphorylation with recombinant kinase, and kinase depletion-reconstitution experiments revealed that Ser1232 in eIF4G1 is phosphorylated by cyclin-dependent kinase 1 (Cdk1):cyclin B during mitosis. Ser1232 is located in an unstructured region of the C-terminal portion of eIF4G1 that coordinates assembly of the eIF4G/-4A/-4B helicase complex and binding of the mitogen-activated protein kinase (MAPK) signal-integrating kinase, Mnk. Intense phosphorylation of Ser1232 in mitosis strongly enhanced the interactions of eIF4A with HEAT domain 2 of eIF4G and decreased association of eIF4G/-4A with RNA. Our findings implicate phosphorylation of eIF4G1(Ser1232) by Cdk1:cyclin B and its inhibitory effects on eIF4A helicase activity in the mitotic translation initiation shift.  相似文献   

15.
Negative regulation of the Cdc25C protein phosphatase by phosphorylation on Ser 216, the 14-3-3-binding site, is an important regulatory mechanism used by cells to block mitotic entry under normal conditions and after DNA damage. During mitosis, Cdc25C is not phosphorylated on Ser 216 and ionizing radiation (IR) does not induce either phosphorylation of Ser 216, or binding to 14-3-3. Here, we show that Cdc25C is phosphorylated on Ser 214 during mitosis, which in turn prevents phosphorylation of Ser 216. Mutation of Ser 214 to Ala reconstitutes Ser 216 phosphorylation and 14-3-3 binding during mitosis. Introduction of exogenous Cdc25C(S214A) into HeLa cells depleted of endogenous Cdc25C results in a substantial delay to mitotic entry. This effect was fully reversed in a S214A/S216A double-mutant, implying that the inhibitory effect of S214A mutant was entirely dependent on Ser 216 phosphorylation. A similar regulatory mechanism may also apply to another mitotic phosphatase, Cdc25B, as well as mitotic phosphatases of other species, including Xenopus laevis. We propose that this pathway ensures that Cdc2 remains active once mitosis is initiated and is a key control mechanism for maintaining the proper order of cell-cycle transitions.  相似文献   

16.
The NH2-terminal domain (N-tail) of histone H3 has been implicated in chromatin compaction and its phosphorylation at Ser10 is tightly correlated with mitotic chromosome condensation. We have developed one mAb that specifically recognizes histone H3 N-tails phosphorylated at Ser10 (H3P Ab) and another that recognizes phosphorylated and unphosphorylated H3 N-tails equally well (H3 Ab). Immunocytochemistry with the H3P Ab shows that Ser10 phosphorylation begins in early prophase, peaks before metaphase, and decreases during anaphase and telophase. Unexpectedly, the H3 Ab shows stronger immunofluorescence in mitosis than interphase, indicating that the H3 N-tail is more accessible in condensed mitotic chromatin than in decondensed interphase chromatin. In vivo ultraviolet laser cross-linking indicates that the H3 N-tail is bound to DNA in interphase cells and that binding is reduced in mitotic cells. Treatment of mitotic cells with the protein kinase inhibitor staurosporine causes histone H3 dephosphorylation and chromosome decondensation. It also decreases the accessibility of the H3 N-tail to H3 Ab and increases the binding of the N-tail to DNA. These results indicate that a phosphorylation-dependent weakening of the association between the H3 N-tail and DNA plays a role in mitotic chromosome condensation.  相似文献   

17.
The massive nonselective and reversible phosphorylation of histone H1 during mitosis is a universal phenomenon among eukaryotes. The growth-associated kinase responsible for this phosphorylation is identical to the maturation promoting factor, a key regulator of the cell cycle. Here we showed that growth-associated kinase, isolated from mitotic HeLa cells which were capable of phosphorylating HeLa H1 in vitro with high activity and mostly at the same sites phosphorylated during mitosis in vivo (assayed by two-dimensional analysis of tryptic phosphopeptides), did not significantly phosphorylate chromatin-bound or nuclear H1 in vitro. Its inability to phosphorylate chromatin-bound H1 did not change when the amount of kinase was increased or the incubation was prolonged. The resistance of chromatin-bound H1 to phosphorylation did not result from chromatin aggregation. Rapid phosphorylation of H1 in vitro, as well as in a nuclear system, was restored when NaCl concentrations were raised above 200 mM where H1:DNA interactions are weakened. At 300 mM NaCl, chromatin-bound H1 was phosphorylated in a subset of the sites observed for free H1 phosphorylated in vitro. These results suggest that active displacement of H1 from chromatin DNA may take place before H1 can be fully phosphorylated during mitosis.  相似文献   

18.
Histone H3 (H3) phosphorylation at Ser(10) occurs during mitosis in eukaryotes and was recently shown to play an important role in chromosome condensation in Tetrahymena. When producing monoclonal antibodies that recognize glial fibrillary acidic protein phosphorylation at Thr(7), we obtained some monoclonal antibodies that cross-reacted with early mitotic chromosomes. They reacted with 15-kDa phosphoprotein specifically in mitotic cell lysate. With microsequencing, this phosphoprotein was proved to be H3. Mutational analysis revealed that they recognized H3 Ser(28) phosphorylation. Then we produced a monoclonal antibody, HTA28, using a phosphopeptide corresponding to phosphorylated H3 Ser(28). This antibody specifically recognized the phosphorylation of H3 Ser(28) but not that of glial fibrillary acidic protein Thr(7). Immunocytochemical studies with HTA28 revealed that Ser(28) phosphorylation occurred in chromosomes predominantly during early mitosis and coincided with the initiation of mitotic chromosome condensation. Biochemical analyses using (32)P-labeled mitotic cells also confirmed that H3 is phosphorylated at Ser(28) during early mitosis. In addition, we found that H3 is phosphorylated at Ser(28) as well as Ser(10) when premature chromosome condensation was induced in tsBN2 cells. These observations suggest that H3 phosphorylation at Ser(28), together with Ser(10), is a conserved event and is likely to be involved in mitotic chromosome condensation.  相似文献   

19.
Phosphorylation of caldesmon by cdc2 kinase   总被引:6,自引:0,他引:6  
A recent report that mitosis-specific phosphorylation causes the nonmuscle caldesmon to dissociate from microfilaments (Yamashiro, S., Yamakita, Y., Ishikawa, R., and Matsumura, F. (1990) Nature 344, 675-678) suggests that this process may contribute to the major structural reorganization of the eukaryotic cell at mitosis. In this study we have demonstrated that smooth muscle caldesmon is phosphorylated in vitro by cdc2 kinase from mitotic phase HeLa cells to 1.2 mol of phosphate/mol of caldesmon. Tryptic maps showed three major phosphorylated spots and approximately equal amounts of phosphorylated Ser and Thr were identified. F-actin or calmodulin in the presence of Ca2+ blocks the phosphorylation of caldesmon. Phosphorylation of caldesmon greatly reduced its binding to F-actin. The phosphorylation sites were located in a 10,000-Da CnBr fragment at the COOH-terminal end of the caldesmon molecule known to house the binding sites for actin and calmodulin (Bartegi A., Fattoum, A., Derancourt, J., and Kassab, R. (1990) J. Biol. Chem. 265, 15231-15238). Our finding supports the model that phosphorylation of caldesmon by cdc2 kinase at mitosis may contribute to the disassembly of the microfilament bundles during prophase.  相似文献   

20.
Aurora B kinase activity is required for successful cell division. In this paper, we show that Aurora B is phosphorylated at serine 331 (Ser331) during mitosis and that phosphorylated Aurora B localizes to kinetochores in prometaphase cells. Chk1 kinase is essential for Ser331 phosphorylation during unperturbed prometaphase or during spindle disruption by taxol but not nocodazole. Phosphorylation at Ser331 is required for optimal phosphorylation of INCENP at TSS residues, for Survivin association with the chromosomal passenger complex, and for complete Aurora B activation, but it is dispensable for Aurora B localization to centromeres, for autophosphorylation at threonine 232, and for association with INCENP. Overexpression of Aurora B(S331A), in which Ser331 is mutated to alanine, results in spontaneous chromosome missegregation, cell multinucleation, unstable binding of BubR1 to kinetochores, and impaired mitotic delay in the presence of taxol. We propose that Chk1 phosphorylates Aurora B at Ser331 to fully induce Aurora B kinase activity. These results indicate that phosphorylation at Ser331 is an essential mechanism for Aurora B activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号