首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inulin is a readily available feedstock for cost-effective production of biochemicals. To date, several studies have explored the production of bioethanol, high-fructose syrup and fructooligosaccharide, but there are no studies regarding the production of d-lactic acid using inulin as a carbon source. In the present study, chicory-derived inulin was used for d-lactic acid biosynthesis by Lactobacillus bulgaricus CGMCC 1.6970. Compared with separate hydrolysis and fermentation processes, simultaneous saccharification and fermentation (SSF) has demonstrated the best performance of d-lactic acid production. Because it prevents fructose inhibition and promotes the complete hydrolysis of inulin, the highest d-lactic acid concentration (123.6 ± 0.9 g/L) with a yield of 97.9 % was obtained from 120 g/L inulin by SSF. Moreover, SSF by L. bulgaricus CGMCC 1.6970 offered another distinct advantage with respect to the higher optical purity of d-lactic acid (>99.9 %) and reduced number of residual sugars. The excellent performance of d-lactic acid production from inulin by SSF represents a high-yield method for d-lactic acid production from non-food grains.  相似文献   

2.
d-Valine is an important organic chiral source and has extensive industrial application, which is used as intermediate for the synthesis of agricultural pesticides, semi-synthetic veterinary antibiotics and pharmaceutical drugs. Its derivatives have shown great activity in clinical use, such as penicillamine for the treatment of immune-deficiency diseases, and actinomycin D for antitumor therapy. Fluvalinate, a pyrethroid pesticide made from d-valine, is a broad-spectrum insecticide with low mammalian toxicity. Valnemulin, a semi-synthetic pleuromutilin derivative synthesized from d-valine, is an antibiotic for animals. Moreover, d-valine is also used in cell culture for selectively inhibiting fibroblasts proliferation. Due to its widespread application, d-valine is gaining more and more attention and some approaches for d-valine preparation have been investigated. In comparison with other approaches, microbial preparation of d-valine is more competitive and promising because of its high stereo selectivity, mild reaction conditions and environmental friendly process. So far, microbial preparation of d-valine can be mainly classified into three categories: microbial asymmetric degradation of dl-valine, microbial stereoselective hydrolysis of N-acyl-dl-valine by d-aminoacylase, and microbial specific hydrolysis of dl-5-isopropylhydantoin by d-hydantoinase coupled with d-carbamoylase. In this paper, the industrial application of d-valine and its microbial preparation are reviewed.  相似文献   

3.
As an important feedstock monomer for the production of biodegradable stereo-complex poly-lactic acid polymer, d-lactate has attracted much attention. To improve d-lactate production by microorganisms such as Lactobacillus delbrueckii, various fermentation conditions were performed, such as the employment of anaerobic fermentation, the utilization of more suitable neutralizing agents, and exploitation of alternative nitrogen sources. The highest d-lactate titer could reach 133 g/L under the optimally combined fermentation condition, increased by 70.5% compared with the control. To decipher the potential mechanisms of d-lactate overproduction, the time-series response of intracellular metabolism to different fermentation conditions was investigated by GC–MS and LC–MS/MS-based metabolomic analysis. Then the metabolomic datasets were subjected to weighted correlation network analysis (WGCNA), and nine distinct metabolic modules and eight hub metabolites were identified to be specifically associated with d-lactate production. Moreover, a quantitative iTRAQ–LC–MS/MS proteomic approach was employed to further analyze the change of intracellular metabolism under the combined fermentation condition, identifying 97 up-regulated and 42 down-regulated proteins compared with the control. The in-depth analysis elucidated how the key factors exerted influence on d-lactate biosynthesis. The results revealed that glycolysis and pentose phosphate pathways, transport of glucose, amino acids and peptides, amino acid metabolism, peptide hydrolysis, synthesis of nucleotides and proteins, and cell division were all strengthened, while ATP consumption for exporting proton, cell damage, metabolic burden caused by stress response, and bypass of pyruvate were decreased under the combined condition. These might be the main reasons for significantly improved d-lactate production. These findings provide the first omics view of cell growth and d-lactate overproduction in L. delbrueckii, which can be a theoretical basis for further improving the production of d-lactate.  相似文献   

4.
d(?)-lactic acid is needed for manufacturing of stereo-complex poly-lactic acid polymer. Large scale d-lactic acid fermentation, however, has yet to be demonstrated. A genetically engineered Escherichia coli strain, HBUT-D, was adaptively evolved in a 15% calcium lactate medium for improved lactate tolerance. The resulting strain, HBUT-D15, was tested at a lab scale (7 L) by fed-batch fermentation with up to 200 g L?1 of glucose, producing 184–191 g L?1 of d-lactic acid, with a volumetric productivity of 4.38 g L?1 h?1, a yield of 92%, and an optical purity of 99.9%. The HBUT-D15 was then evaluated at a semi-industrial scale (30 m3) via fed-batch fermentation with up to 160 g L?1 of glucose, producing 146–150 g L?1 of d-lactic acid, with a volumetric productivity of 3.95–4.29 g L?1 h?1, a yield of 91–94%, and an optical purity of 99.8%. These results are comparable to that of current industrial scale l(+)-lactic acid fermentation.  相似文献   

5.
We successfully engineered a new enzyme that catalyzes the formation of d-Ala amide (d-AlaNH2) from d-Ala by modifying ATP-dependent d-Ala:d-Ala ligase (EC 6.3.2.4) from Thermus thermophilus, which catalyzes the formation of d-Ala-d-Ala from two molecules of d-Ala. The new enzyme was created by the replacement of the Ser293 residue with acidic amino acids, as it was speculated to bind to the second d-Ala of d-Ala-d-Ala. In addition, a replacement of the position with Glu performed better than that with Asp with regards to specificity for d-AlaNH2 production. The S293E variant, which was selected as the best enzyme for d-AlaNH2 production, exhibited an optimal activity at pH 9.0 and 40 °C for d-AlaNH2 production. The apparent K m values of this variant for d-Ala and NH3 were 7.35 mM and 1.58 M, respectively. The S293E variant could catalyze the synthesis of 9.3 and 35.7 mM of d-AlaNH2 from 10 and 50 mM d-Ala and 3 M NH4Cl with conversion yields of 93 and 71.4 %, respectively. This is the first report showing the enzymatic formation of amino acid amides from amino acids.  相似文献   

6.
Both enantiomers of lactic acid, l-lactic acid and d-lactic acid, can be produced in a sustainable way by a photosynthetic microbial cell factory and thus from CO2, sunlight, and water. Several properties of polylactic acid (a polyester of polymerized lactic acid) depend on the controlled blend of these two enantiomers. Recently, cyanobacterium Synechocystis sp. strain PCC6803 was genetically modified to allow formation of either of these two enantiomers. This report elaborates on the d-lactic acid production achieved by the introduction of a d-specific lactate dehydrogenase from the lactic acid bacterium Leuconostoc mesenteroides into Synechocystis. A typical batch culture of this recombinant strain initially shows lactic acid production, followed by a phase of lactic acid consumption, until production “outcompetes” consumption at later growth stages. We show that Synechocystis is able to use d-lactic acid, but not l-lactic acid, as a carbon source for growth. Deletion of the organism''s putative d-lactate dehydrogenase (encoded by slr1556), however, does not eliminate this ability with respect to d-lactic acid consumption. In contrast, d-lactic acid consumption does depend on the presence of glycolate dehydrogenase GlcD1 (encoded by sll0404). Accordingly, this report highlights the need to match a product of interest of a cyanobacterial cell factory with the metabolic network present in the host used for its synthesis and emphasizes the need to understand the physiology of the production host in detail.  相似文献   

7.
Sweet sorghum is a bioenergy crop that produces large amounts of soluble sugars in its stems (3–7 Mg ha?1) and generates significant amounts of bagasse (15–20 Mg ha?1) as a lignocellulosic feedstock. These sugars can be fermented not only to biofuels but also to bio-based chemicals. The market potential of the latter may be higher given the current prices of petroleum and natural gas. The yield and rate of production of optically pure d-(?)- and l-(+)-lactic acid as precursors for the biodegradable plastic polylactide was optimized for two thermotolerant Bacillus coagulans strains. Strain 36D1 fermented the sugars in unsterilized sweet sorghum juice at 50 °C to l-(+)-lactic acid (~150 g L?1; productivity, 7.2 g L?1 h?1). B. coagulans strain QZ19-2 was used to ferment sorghum juice to d-(?)-lactic acid (~125 g L?1; productivity, 5 g L?1 h?1). Carbohydrates in the sorghum bagasse were also fermented after pretreatment with 0.5 % phosphoric acid at 190 °C for 5 min. Simultaneous saccharification and co-fermentation of all the sugars (SScF) by B. coagulans resulted in a conversion of 80 % of available carbohydrates to optically pure lactic acid depending on the B. coagulans strain used as the microbial biocatalyst. Liquefaction of pretreated bagasse with cellulases before SScF (L + SScF) increased the productivity of lactic acid. These results show that B. coagulans is an effective biocatalyst for fermentation of all the sugars present in sweet sorghum juice and bagasse to optically pure lactic acid at high titer and productivity as feedstock for bio-based plastics.  相似文献   

8.
d-Stereospecific amidohydrolase (DAH) from Streptomyces sp. 82F2 has potential utility for the synthesis of d/l configuration dipeptides by an aminolysis reaction. Structural comparison of DAH with substrate-bound d-amino acid amidase revealed that three residues located in the active site pocket of DAH (Thr145, Ala267, and Gly271) might be involved in interactions with d-phenylalanine substrate. We substituted Ala267 and Gly271, which are located at the bottom of the hydrophobic pocket of DAH, with Phe and observed changes in the stereoselectivity and specific activity toward the free and acetylated forms of d/l-Phe-methyl esters. In contrast, the mutation of Thr145, which likely supplies negative charge for recognition of the amino group of the substrate, hardly affected the stereoselectivity of the enzyme. A similar effect was observed in an investigation of hydrolysis and aminolysis reactions using the acetylated forms of d/l-Phe-methyl esters and 1,8-diaminooctane as an acyl-donor and acyl-acceptor, respectively. Substrate binding by DAH was disrupted by the mutation of Ala267 to Val or Trp and kinetic analysis showed that the hydrophobicity of the bottom of the active site pocket (Ala267 and Gly271) is important for both stereoselectivity and recognition of hydrophobic substrates.  相似文献   

9.
Poly-lactic acid (PLA) derived from renewable resources is considered to be a good substitute for petroleum-based plastics. The number of poly l-lactic acid applications is increased by the introduction of a stereocomplex PLA, which consists of both poly-l and d-lactic acid and has a higher melting temperature. To date, several studies have explored the production of l-lactic acid, but information on biosynthesis of d-lactic acid is limited. Pulp and corn stover are abundant, renewable lignocellulosic materials that can be hydrolyzed to sugars and used in biosynthesis of d-lactic acid. In our study, saccharification of pulp and corn stover was done by cellulase CTec2 and sugars generated from hydrolysis were converted to d-lactic acid by a homofermentative strain, L. delbrueckii, through a sequential hydrolysis and fermentation process (SHF) and a simultaneous saccharification and fermentation process (SSF). 36.3 g L?1 of d-lactic acid with 99.8 % optical purity was obtained in the batch fermentation of pulp and attained highest yield and productivity of 0.83 g g?1 and 1.01 g L?1 h?1, respectively. Luedeking–Piret model described the mixed growth-associated production of d-lactic acid with a maximum specific growth rate 0.2 h?1 and product formation rate 0.026 h?1, obtained for this strain. The efficient synthesis of d-lactic acid having high optical purity and melting point will lead to unique stereocomplex PLA with innovative applications in polymer industry.  相似文献   

10.
Members of the genus Caldicellulosiruptor are the most thermophilic cellulolytic bacteria so far described and are capable of efficiently utilizing complex lignocellulosic biomass without conventional pretreatment. Previous studies have shown that accumulation of high concentrations of cellobiose and, to a lesser extent, cellotriose, inhibits cellulase activity both in vivo and in vitro and high concentrations of cellobiose are present in C. bescii fermentations after 90 h of incubation. For some cellulolytic microorganisms, β-d-glucosidase is essential for the efficient utilization of cellobiose as a carbon source and is an essential enzyme in commercial preparations for efficient deconstruction of plant biomass. In spite of its ability to grow efficiently on crystalline cellulose, no extracellular β-d-glucosidase or its GH1 catalytic domain could be identified in the C. bescii genome. To investigate whether the addition of a secreted β-d-glucosidase would improve growth and cellulose utilization by C. bescii, we cloned and expressed a thermostable β-d-glucosidase from Acidothermus cellulolyticus (Acel_0133) in C. bescii using the CelA signal sequence for protein export. The effect of this addition was modest, suggesting that β-d-glucosidase is not rate limiting for cellulose deconstruction and utilization by C. bescii.  相似文献   

11.
Simple and convergent synthesis of a tetra- and a trisaccharide portions of an antitumor compound Julibroside J28, isolated from Albizia julibrissin, that showed significant in vitro antitumor activity against HeLa, Bel-7402 and PC-3M-1E8 cancer cell lines is reported. The tetrasaccharide has been synthesized as its p-methoxyphenyl glycoside starting from commercially available d-glucose, l-rhamnose and l-arabinose. The trisaccharide part has been synthesized from commercially available N-acetyl d-glucosamine, d-fucose and d-xylose using simple protecting group manipulations. Sulfuric acid immobilized on silica has been used successfully as a Brönsted acid catalyst for the crucial glycosylation steps.  相似文献   

12.
d-Sorbitol-6-phosphate 2-dehydrogenase (S6PDH, E.C. 1.1.1.140) catalyzes the NADH-dependent conversion of d-fructose 6-phosphate (F6P) to d-sorbitol 6-phosphate (S6P). In this work, recombination and characterization of Haloarcula marismortui d-sorbitol-6-phosphate 2-dehydrogenase are reported. Haloarcula marismortui d-sorbitol-6-phosphate 2-dehydrogenase was expressed in P. pastoris and Arabidopsis thaliana. Enzyme assay indicated that HmS6PDH catalyzes the reduction of d-fructose 6-phosphate to d-sorbitol 6-phosphate and HmS6PDH activity was enhanced by NaCl. Furthermore, transgenic A. thaliana ectopic expressing HmS6PDH accumulate more sorbitol under salt stress. These results suggest that the ectopic expression of HmS6PDH in plants can facilitate future studies regarding the engineering and breeding of salt-tolerant crops.  相似文献   

13.
In previous work, we proposed a novel modified one-step fermentation fed-batch strategy to efficiently generate l-lactic acid (l-LA) using Rhizopus oryzae. In this study, to further enhance efficiency of l-LA production through one-step fermentation in fed-batch cultures, we systematically investigated the initial peptone- and glucose-feeding approaches, including different initial peptone and glucose concentrations and maintained residual glucose levels. Based on the results of this study, culturing R. oryzae with initial peptone and glucose concentrations of 3.0 and 50.0 g/l, respectively, using a fed-batch strategy is an effective approach of producing l-LA through one-step fermentation. Changing the residual glucose had no obvious effect on the generation of l-LA. We determined the maximum LA production and productivity to be 162 g/l and 6.23 g/(l·h), respectively, during the acid production stage. Compared to our previous work, there was almost no change in l-LA production or yield; however, the productivity of l-LA increased by 14.3%.  相似文献   

14.
Various metabolites were analyzed in groundnut genotypes grown under varying temperature regimes (based on date of sowing). Four contrasting groundnut genotypes viz. ICGS44 (high-temperature tolerant), AK159 and GG7 (moderately-high-temperature tolerant), and DRG1 (high-temperature sensitive) were grown at three different temperature regimes i.e., low (early date of sowing), normal (normal date of sowing) and high temperature (late date of sowing) under field conditions. Untargeted metabolomic analysis of leaf tissue was performed by GC–MS, while targeted metabolite profiling was carried out by HPLC (polyamines) and UPLC-MS/MS (phenolics) at both the pegging and pod filling stages. Untargeted metabolomic profiling revealed exclusive expression/induction of beta-d-galactofuranoside, l-threonine, hexopyranose, d-glucopyranose, stearic acid, 4-ketoglucose, d-gulose, 2-o-glycerol-alpha-d-galactopyranoside and serine in ICGS44 during the pegging stage under high-temperature conditions. During the pod filling stage at higher temperature, alpha-d-galactoside, dodecanedioic acid, 1-nonadecene, 1-tetradecene and beta-d-galactofuranose were found to be higher in both ICGS44 and GG7. Moreover, almost all the metabolites detected by GC–MS were found to be higher in GG7, except beta-d-galactopyranoside, beta-d-glucopyranose, inositol and palmitic acid. Accumulation of putrescine was observed to be higher during low-temperature stress, while agmatine showed constitutive expression in all the genotypes, irrespective of temperature regime and crop growth stage. Interestingly, spermidine was observed only in the high-temperature tolerant genotype ICGS44. In our study, we found a higher accumulation of cinnamic acid, caffeic acid, salicylic acid and vanillic acid in ICGS44 compared to that of other genotypes at the pegging stage, whereas catechin and epicatechin were found during the pod filling stage in response to high-temperature stress, suggesting their probable roles in heat-stress tolerance in groundnut.  相似文献   

15.
Immobilized cells of Bacillus subtilis HLZ-68 were used to produce d-alanine from dl-alanine by asymmetric degradation. Different compounds such as polyvinyl alcohol and calcium alginate were employed for immobilizing the B. subtilis HLZ-68 cells, and the results showed that cells immobilized using a mixture of these two compounds presented higher l-alanine degradation activity, when compared with free cells. Subsequently, the effects of different concentrations of polyvinyl alcohol and calcium alginate on l-alanine consumption were examined. Maximum l-alanine degradation was exhibited by cells immobilized with 8% (w/v) polyvinyl alcohol and 2% (w/v) calcium alginate. Addition of 400 g of dl-alanine (200 g at the beginning of the reaction and 200 g after 30 h of incubation) into the reaction solution at 30 °C, pH 6.0, aeration of 1.0 vvm, and agitation of 400 rpm resulted in complete l-alanine degradation within 60 h, leaving 185 g of d-alanine in the reaction solution. The immobilized cells were applied for more than 15 cycles of degradation and a maximum utilization rate was achieved at the third cycle. d-alanine was easily extracted from the reaction solution using cation-exchange resin, and the chemical and optical purity of the extracted d-alanine was 99.1 and 99.6%, respectively.  相似文献   

16.
For strain improvement, robust and scalable high-throughput cultivation systems as well as simple and rapid high-throughput detection methods are crucial. However, most of the screening methods for lactic acid bacteria (LAB) strains were conducted in shake flasks and detected by high-performance liquid chromatography (HPLC), making the screening program laborious, time-consuming and costly. In this study, an integrated strategy for high-throughput screening of high l-lactic acid-productivity strains by Bacillus coagulans in deep-well microtiter plates (MTPs) was developed. The good agreement of fermentation results obtained in the MTPs platform with shake flasks confirmed that 24-well U-bottom MTPs could well alternate shake flasks for cell cultivation as a scale-down tool. The high-throughput pH indicator (bromocresol green) and l-lactate oxidase (LOD) assays were subsequently developed to qualitatively and quantitatively analyze l-lactic acid concentration. Together with the color halos method, the pH indicator assay and LOD assay, the newly developed three-step screening strategy has greatly accelerated the screening process for LAB strains with low cost. As a result, two high l-lactic acid-productivity mutants, IH6 and IIIB5, were successfully screened out, which presented, respectively, 42.75 and 46.10 % higher productivities than that of the parent strain in a 5-L bioreactor.  相似文献   

17.
As intermediates in the TCA cycle, l-malate and its derivatives have been widely applied in the food, pharmaceutical, agriculture, and bio-based material industries. In recent years, biological routes have been regarded as very promising approaches as cost-effective ways to l-malate production from low-priced raw materials. In this mini-review, we provide a comprehensive overview of current developments of l-malate production using both biocatalysis and microbial fermentation. Biocatalysis is enzymatic transformation of fumarate to l-malate, here, the source of enzymes, catalytic conditions, and enzymatic molecular modification may be concluded. For microbial fermentation, the types of microorganisms, genetic characteristics, biosynthetic pathways, metabolic engineering strategies, fermentation substrates, and optimization of cultivation conditions have been discussed and compared. Furthermore, the combination of enzyme and metabolic engineering has also been summarized. In future, we also expect that novel biological approaches using industrially relevant strains and renewable raw materials can overcome the technical challenges involved in cost-efficient l-malate production.  相似文献   

18.
l-Amino acids find various applications in biotechnology. l-Glutamic acid and its salts are used as flavor enhancers. Other l-amino acids are used as food or feed additives, in parenteral nutrition or as building blocks for the chemical and pharmaceutical industries. l-amino acids are synthesized from precursors of central carbon metabolism. Based on the knowledge of the biochemical pathways microbial fermentation processes of food, feed and pharma amino acids have been developed. Production strains of Corynebacterium glutamicum, which has been used safely for more than 50 years in food biotechnology, and Escherichia coli are constantly improved using metabolic engineering approaches. Research towards new processes is ongoing. Fermentative production of l-amino acids in the million-ton-scale has shaped modern biotechnology and its markets continue to grow steadily. This review focusses on recent achievements in strain development for amino acid production including the use of CRISPRi/dCas9, genome-reduced strains, biosensors and synthetic pathways to enable utilization of alternative carbon sources.  相似文献   

19.
This article presents changes in concentrations of d-pinitol (and other cyclitols as well as low molecular weight carbohydrates) in vegetative and reproductive organs of fenugreek (Trigonella foenumgraecum L.) during an entire plant growing period. d-Pinitol was the major cyclitol in all tested organs, representing 43–94% of total cyclitols and 2–77% of total soluble carbohydrates. The highest concentration of d-pinitol was found in pods (14–23 mg g?1 of dry weight, DW), lower in leaves and stems (5–20 and 9–10 mg g?1 DW, respectively), and the lowest in maturing seeds (2–5 mg g?1 DW). Although maturing seeds accumulate α-d-galactosides of d-pinitol (galactosyl pinitols, up to 6.6 mg g?1 DW), the major storage sugars were raffinose family oligosaccharides (RFOs, 65.37 mg g?1 DW). Both RFOs and galactosyl pinitols are hydrolyzed during seed germination, releasing sucrose and d-pinitol, respectively. Accumulation of free galactose was not detected. Owing to the high concentration of d-pinitol (up to 23.70 mg g?1 DW) and low concentration of soluble sugars, developing pods seem to be the best source of d-pinitol.  相似文献   

20.
Sporolactobacillus inulinus, a homofermentative lactic acid bacterium, is a species capable of efficient industrial d-lactic acid production from glucose. Glucose phosphorylation is the key step of glucose metabolism, and fine-tuned expression of which can improve d-lactic acid production. During growth on high-concentration glucose, a fast induction of high glucokinase (GLK) activity was observed, and paralleled the patterns of glucose consumption and d-lactic acid accumulation, while phosphoenolpyruvate phosphotransferase system (PTS) activity was completely repressed. The transmembrane proton gradient of 1.3–1.5 units was expected to generate a large proton motive force to the uptake of glucose. This suggests that the GLK pathway is the major route for glucose utilization, with the uptake of glucose through PTS-independent transport systems and phosphorylation of glucose by GLK in S. inulinus d-lactic acid production. The gene encoding GLK was cloned from S. inulinus and expressed in Escherichia coli. The amino acid sequence revealed significant similarity to GLK sequences from Bacillaceae. The recombinant GLK was purified and shown to be a homodimer with a subunit molecular mass of 34.5?kDa. Strikingly, it demonstrated an unusual broad substrate specificity, catalyzing phosphorylation of 2-deoxyglucose, mannitol, maltose, galactose and glucosamine, in addition to glucose. This report documented the key step concerning glucose phosphorylation of S. inulinus, which will help to understand the regulation of glucose metabolism and d-lactic acid production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号