首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Viral nervous necrosis virus (VNNV) is the aetiological agent of viral nervous necrosis (VNN), a widespread disease affecting different marine and freshwater fish species. Striped jack nervous necrosis virus (SJNNV) and red‐spotted grouper nervous necrosis virus (RGNNV) are the only genotypes of the Betanodavirus genus recorded in the Iberian Peninsula to date, but a high percentage of wild specimens simultaneously carrying both genotypes has been recently reported. The coexistence of the two viruses may affect the course of both viral infections. In the present study, viral genome quantification by two absolute real‐time PCR protocols has been performed to characterise the effect of the RGNNV‐SJNNV coexistence (coinfection and superinfection) on the replication of each genotype in E‐11 cells. This is the first study showing the effect of the coexistence on the viral replication of two genotypes within the Betanodavirus genus. The results obtained in vitro showed the partial inhibition of SJNNV replication by the coexistence with RGNNV, whereas RGNNV replication was favoured in coinfection or superinfection with SJNNV.  相似文献   

3.
Aims: To detect the possible coexistence of striped jack nervous necrosis virus (SJNNV) and red‐spotted grouper nervous necrosis virus (RGNNV) genotypes in a single fish, a methodology based on the combination of PCR amplification and blot hybridization has been developed and applied in this study. Methods and Results: The degenerate primers designed for the PCR procedure target the T4 region within the capsid gene, resulting in the amplification of both genotypes. The subsequent hybridization of these amplification products with two different specific digoxigenin‐labelled probes resulted in the identification of both genotypes separately. The application of the RT‐PCR protocol to analyse blood samples from asymptomatic wild meagre (Argyrosomus regius) specimens has shown a 46·87% of viral nervous necrosis virus carriers. The combination of RT‐PCR and blot hybridization increases the detection rate up to 90·62%, and, in addition, it has shown the coexistence of both genotypes in 18 out of the 32 specimens analysed (56·25%). Conclusions: This study reports the coexistence of betanodaviruses belonging to two different genotypes (SJNNV and RGNNV) in wild fish specimens. Significance and Impact of the Study: This is the first report demonstrating the presence of SJNNV and RGNNV genotypes in the same specimen. This study also demonstrates a carrier state in this fish species for the first time.  相似文献   

4.
Fish nodaviruses are causative agents of viral nervous necrosis causing high mortality in cultured marine fishes around the world. The first successful isolation of fish nodavirus was made with SSN-1 cells, which are persistently infected with snakehead retrovirus (SnRV). In the present study, a BF-2 cell line persistently infected with SnRV (PI-BF-2) was established to evaluate the influence of SnRV on the production of fish nodavirus. The PI-BF-2 cells were slightly more slender than BF-2 cells, but no difference was observed in propagation rate between both cell lines. No difference was observed in production of SnRV between PI-BF-2 and SSN-1 cell lines. Although both PI-BF-2 and BF-2 cell lines showed no cytopathic effect (CPE) after inoculation of striped jack nervous necrosis virus (SJNNV) and redspotted grouper nervous necrosis virus (RGNNV), these fish nodaviruses could be amplified in BF-2 cells, and moreover, production of fish nodaviruses in the PI-BF-2 cell line was more than 40 times higher than in BF-2 cells. Thus, it was concluded that BF-2 cell permissiveness to fish nodaviruses was enhanced by persistent infection with SnRV. Furthermore, homologous cDNA to genomic RNA of SJNNV was detected from both PI-BF-2 and SSN-1 cell lines persistently infected with SnRV. The amount of nodavirus cDNA in SJNNV-inoculated PI-BF-2 cells was clearly lower than that in SJNNV-inoculated SSN-1 cells.  相似文献   

5.
Betanodaviruses, the causative agents of viral nervous necrosis in marine fish, have bipartite positive-sense RNA genomes. The viruses have been classified into 4 distinct types based on nucleotide sequence similarities in the variable region (the so-called T4 region) of the smaller genomic segment RNA2 (1.4 kb). Betanodaviruses have marked host specificity, although the primary structures of the viral RNAs and encoded proteins are similar among the viruses. We have previously demonstrated, using reassortants between striped jack nervous necrosis virus (SJNNV) and redspotted grouper nervous necrosis virus (RGNNV), that RNA2, which encodes the coat protein, strictly controls host specificity. However, because RNA2 is large, we were unable to propose a mechanism underlying this RNA2-based host specificity. To identify the RNA2 region that controls host specificity, we constructed RNA2 chimeric viruses from SJNNV and RGNNV and tested their infectivity in the original host fish, striped jack Pseudocaranx dentex and sevenband grouper Epinephelus septemfasciatus. Among these chimeric viruses, SJNNV mutants containing the variable region of RGNNV RNA2 infected sevenband grouper larvae in a manner similar to RGNNV, while RGNNV mutants containing the variable region of SJNNV RNA2 infected striped jack larvae in a manner similar to SJNNV. Immunofluorescence microscopic studies using anti-SJNNV polyclonal antibodies revealed that these chimeric viruses multiplied in the brains, spinal cords and retinas of the infected fish, as in infections by the parental viruses. These results indicate that the variable region of RNA2 is sufficient to control host specificity in SJNNV and RGNNV.  相似文献   

6.
Comparisons among the complete genomes of four betanodavirus genotypes   总被引:1,自引:0,他引:1  
Betanodaviruses, the causative agents of viral nervous necrosis in marine fish, have bipartite positive-sense RNA genomes and have been classified (based on analysis of RNA2 sequences) into 4 genotypes: tiger puffer nervous necrosis virus (TPNNV), barfin flounder nervous necrosis virus (BFNNV), striped jack nervous necrosis virus (SJNNV), and redspotted grouper nervous necrosis virus (RGNNV). Full-length genomes of TPNNV and BFNNV were sequenced for the first time in this study. Their sequence data and those of SJNNV and RGNNV retrieved from GenBank were compared in order to investigate the relationships among the 4 genotypes. Between TPNNV and BFNNV, sequence identities were relatively high in RNA1 and encoded Protein A, but were not significantly high in RNA2 or the coat protein (CP). Similarly, between BFNNV and RGNNV, the amino acid sequences of CP were highly similar, but identities of RNA1, RNA2, and Protein A sequences were not especially high. Furthermore, multiple alignment data of the 4 genotypes of RNA2 sequences revealed that the TPNNV and SJNNV sequences have the same sizes of gaps and extra sequences at the same positions. Collectively, these apparent contradictions in sequence identity suggest that betanodavirus genomes have been constructed via complex evolutionary processes.  相似文献   

7.
8.
Viral Encephalopathy and Retinopathy (VER), is caused by a nodavirus included within the Betanodavirus genus of the Nodaviridae family. This disease affects more than 30 marine fish species worldwide and has been a major obstacle in the aquaculture industry; control of the disease is based on virus detection, essentially in carrier specimens. This study describes a real time PCR procedure for viral nervous necrosis virus detection from several organs of sea bass, Senegalese sole, and gilt‐head sea bream, from fish displaying either clinical symptoms or asymptomatic cases. The sensitivity of this technique was about 106‐fold higher than that of the conventional RT‐PCR. The newly designed primers detected nodavirus isolates belonging to the RGNNV and SJNNV genotypes.  相似文献   

9.
Serological relationships among genotypic variants of betanodavirus   总被引:6,自引:0,他引:6  
Betanodaviruses, the causative agents of viral nervous necrosis or viral encephalopathy and retinopathy, are divided into 4 genotypes based on the coat protein gene (RNA2). In the present study, serological relationships among betanodavirus genotypic variants were examined by virus neutralization tests using rabbit antisera raised against purified virions of strains representative of each genotype. All 20 isolates examined shared epitopes for neutralizing, but they fell into 3 major serotypes (A, B, C). This sero-grouping is in part consistent with their genotypes, i.e. Serotype A for striped jack nervous necrosis virus (SJNNV) genotype, Serotype B for tiger puffer nervous necrosis virus (TPNNV) genotype, and Serotype C for both redspotted grouper nervous necrosis virus (RGNNV) and barfin flounder nervous necrosis virus (BFNNV) genotypes. The serological relatedness between RGNNV and BFNNV genotypes may result from their relatively higher similarity in RNA2 sequences. In neutralization tests using antisera of kelp grouper Epinephelus moara, which were raised against recombinant coat proteins representing each genotype, anti-SJNNV and anti-TPNNV sera neutralized only the homologous strain, and anti-RGNNV and anti-BFNNV sera reacted with both RGNNV and BFNNV strains. The present serological findings will be important in investigating the infectivity and host-specificity of betanodaviruses and in developing vaccines for the disease.  相似文献   

10.
11.
Several microbial disease outbreaks in farm stocks of newly cultured sparid fish species, such as common seabream, redbanded seabream, and white seabream, were recorded from 2004 to 2006. This study describes the isolation and characterization of the potential causative agents, either bacteria or viruses, of these outbreaks. The isolated bacterial strains were characterized according to traditional taxonomical analyses and sequencing of a 16S rDNA fragment. Most bacteria were identified as Vibrio spp. and Photobacterium damselae subsp. damselae. The development of cytopathic effects (CPE) on different fish cell lines, the application of specific nested-PCR tests for infectious pancreatic necrosis virus (IPNV), viral nervous necrosis virus (VNNV) and viral hemorrhagic septicemia virus (VHSV), and subsequent sequence analyses were used for virus detection and identification. VNNV, related to the striped jack neural necrosis virus (SJNNV) genotype, and VHSV, related to the genotype Ia, were the only viruses detected. VNNV was isolated from the three fish species under study in five different outbreaks, whereas VHSV was isolated from common seabream and white seabream during two of these outbreaks. IPNV was not detected in any case.  相似文献   

12.
The level of protective immunity was determined for Chinook Oncorhynchus tshawytscha and sockeye/kokanee salmon (anadromous and landlocked) O. nerka following intramuscular vaccination with a DNA vaccine against the aquatic rhabdovirus, infectious hematopoietic necrosis virus (IHNV). A DNA vaccine containing the glycoprotein gene of IHNV protected Chinook and sockeye/kokanee salmon against waterborne or injection challenge with IHNV, and relative percent survival (RPS) values of 23 to 86% were obtained under a variety of lethal challenge conditions. Although this is significant protection, it is less than RPS values obtained in previous studies with rainbow trout (O. mykiss). In addition to the variability in the severity of the challenge and inherent host susceptibility differences, it appears that use of a cross-genogroup challenge virus strain may lead to reduced efficacy of the DNA vaccine. Neutralizing antibody titers were detected in both Chinook and sockeye that had been vaccinated with 1.0 and 0.1 pg doses of the DNA vaccine, and vaccinated fish responded to viral challenges with higher antibody titers than mock-vaccinated control fish.  相似文献   

13.
14.
The capacity of intramuscular (i.m.) inoculation of mice with homologous or heterologous host rotaviruses to induce protection from challenge was evaluated. i.m. inoculation with live, wild-type rotavirus (murine strain EDIM) induced complete protection from viral shedding after challenge for at least 6 weeks after inoculation; protection was correlated with production of virus-specific immunoglobulin A (IgA) by lamina propria (LP) lymphocytes. i.m. inoculation with inactivated EDIM, cell culture-adapted EDIM, or simian strain RRV was associated with partial protection, characterized by reduced viral shedding after challenge. Partial protection after challenge was not associated with production of virus-specific IgA by LP lymphocytes. The mechanisms by which i.m. inoculation induces virus-specific humoral immune responses in the small intestinal LP were examined.  相似文献   

15.
Zhao Z  Wakita T  Yasui K 《Journal of virology》2003,77(7):4248-4260
We established a simple and effective method for DNA immunization against Japanese encephalitis virus (JEV) infection with plasmids encoding the viral PrM and E proteins and colloidal gold. Inoculation of plasmids mixed with colloidal gold induced the production of specific anti-JEV antibodies and a protective response against JEV challenge in BALB/c mice. When we compared the efficacy of different inoculation routes, the intravenous and intradermal inoculation routes were found to elicit stronger and more sustained neutralizing immune responses than intramuscular or intraperitoneal injection. After being inoculated twice, mice were found to resist challenge with 100,000 times the 50% lethal dose (LD(50)) of JEV (Beijing-1 strain) even when immunized with a relatively small dose of 0.5 micro g of plasmid DNA. Protective passive immunity was also observed in SCID mice following transfer of splenocytes or serum from plasmid DNA- and colloidal gold-immunized BALB/c mice. The SCID mice resisted challenge with 100 times the LD(50) of JEV. Analysis of histological sections detected expression of proteins encoded by plasmid DNA in the tissues of intravenously, intradermally, and intramuscularly inoculated mice 3 days after inoculation. DNA immunization with colloidal gold elicited encoded protein expression in splenocytes and might enhance immune responses in intravenously inoculated mice. This approach could be exploited to develop a novel DNA vaccine.  相似文献   

16.
Summary Following inoculation of guinea-pigs with the Flury strain of rabies virus in the muscles of the foreleg, the virus could be recovered from the cervico-thoracic cord on the 4th day. From the 6th day on the virus spread in both directions, to the brain and to the lumbosacral cord. There was a close parallelism between the virus distribution and the clinical symptoms: the first signs of paralysis were observed in the inoculated leg. Intravenous inoculation into the veins of the penis resulted in a mortality rate at least as high as that induced by intramuscular injection. The symptoms and the virus distribution demonstrated that the virus first invaded the anterior part of the central nervous system. From these experiments and others previously reported, we may conclude that after intramuscular inoculation the first segment of the central nervous system, invaded by the virus, corresponds with the site of inoculation, whereas after intravenous inoculation no such correlation exists.  相似文献   

17.
Live-captured striped skunks (Mephitis mephitis) and raccoons (Procyon lotor) were immunized with inactivated rabies vaccine by intramuscular injection and released at the point of capture during a rabies control program in Metropolitan Toronto (Ontario, Canada). Serum samples collected prior to and following vaccination revealed that 100% of the skunks and 98% of the raccoons seroconverted. Rabies antibody was still detectable 314 to 757 days postvaccination. Five of six skunks vaccinated in the laboratory survived challenge with rabies virus 90 days postvaccination. To our knowledge, this is the first documentation of the successful seroconversion of skunks and raccoons vaccinated against rabies in the field.  相似文献   

18.
19.
DNA vaccines are usually given by intramuscular injection or by gene gun delivery of DNA-coated particles into the epidermis. Induction of mucosal immunity by targeting DNA vaccines to mucosal surfaces may offer advantages, and an oral vaccine could be effective for controlling infections of the gut mucosa. In a murine model, we obtained protective immune responses after oral immunization with a rotavirus VP6 DNA vaccine encapsulated in poly(lactide-coglycolide) (PLG) microparticles. One dose of vaccine given to BALB/c mice elicited both rotavirus-specific serum antibodies and intestinal immunoglobulin A (IgA). After challenge at 12 weeks postimmunization with homologous rotavirus, fecal rotavirus antigen was significantly reduced compared with controls. Earlier and higher fecal rotavirus-specific IgA responses were noted during the peak period of viral shedding, suggesting that protection was due to specific mucosal immune responses. The results that we obtained with PLG-encapsulated rotavirus VP6 DNA are the first to demonstrate protection against an infectious agent elicited after oral administration of a DNA vaccine.  相似文献   

20.
Ranaviruses have been observed with increasing frequency amongst poikilothermic vertebrate hosts. The impact of ranaviruses upon amphibian populations has remained largely unknown. A gene probe for Bohle iridovirus (BIV) based upon primers designed to detect epizootic haematopoietic necrosis virus (EHNV) was constructed. A PCR and dot-blot system was used successfully in screening for the presence of BIV nucleic acid in digested formalin-fixed, paraffin-embedded amphibian tissues. Juvenile frogs were more susceptible to BIV than adults. In experimental challenges and epizootics in captive frogs, juvenile Litoria caerulea, L. alboguttata, Cyclorana brevipes and Pseudophryne coriacea were acutely susceptible. High mortality (at or near 100%) resulted, usually occurring within 5 to 25 d depending on dose and method of exposure. Histopathological changes included mainly hepatic, renal and splenic necroses. Significant haemosiderosis was encountered in more chronically infected frogs. BIV could be reisolated from juvenile L. caerulea >40 d after inoculation, and >200 d after the first mortalities occurred in an epizootic in L. alboguttata. Adult L. rubella, L. inermis, L. caerulea, Cophixalus ornatus and Taudactylus acutirostris were less susceptible in trials ranging from 30 to > 100 d. There was some evidence of chronic infection, and BIV could be detected by PCR. Wild moribund adult L. caerulea from Townsville and captive juvenile Pseudophryne corieacea from Sydney undergoing mortality tested positive with the BIV PCR. PCR and dot blot was more sensitive than viral isolation. PCR could detect BIV in amphibians long after BIV challenge, and in amphibians which appeared healthy. Ranaviruses could be having an impact on Australian herpetofauna.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号