首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mammalian circadian clock in the suprachiasmatic nuclei (SCN) can be phase-shifted by neuropeptide Y applied in the subjective day. Previous studies suggested that neuropeptide Y might act through a protein kinase C (PKC)-dependent mechanism. We directly measured PKC activity in suprachiasmatic nuclei brain slices following application of neuropeptide Y. PKC activity increased 5 min after neuropeptide Y application, with a return to baseline levels 15 min after application. An initial small decrease in PKC activity 1 min after neuropeptide Y application was also observed after control applications of artificial cerebrospinal fluid. Our results support the hypothesis that phase shifts induced by neuropeptide Y involve activation of PKC.  相似文献   

2.
The mammalian circadian clock in the suprachiasmatic nuclei (SCN) can be phase-shifted by neuropeptide Y applied in the subjective day. Previous studies suggested that neuropeptide Y might act through a protein kinase C (PKC)-dependent mechanism. We directly measured PKC activity in suprachiasmatic nuclei brain slices following application of neuropeptide Y. PKC activity increased 5 min after neuropeptide Y application, with a return to baseline levels 15 min after application. An initial small decrease in PKC activity 1 min after neuropeptide Y application was also observed after control applications of artificial cerebrospinal fluid. Our results support the hypothesis that phase shifts induced by neuropeptide Y involve activation of PKC.  相似文献   

3.
Ramelteon, an MT(1)/MT(2) melatonin receptor agonist, is used for the treatment of sleep-onset insomnia and circadian sleep disorders. Ramelteon phase shifts circadian rhythms in rodents and humans when given at the end of the subjective day; however, its efficacy at other circadian times is not known. Here, the authors determined in C3H/HeN mice the maximal circadian sensitivity for ramelteon in vivo on the onset of circadian running-wheel activity rhythms, and in vitro on the peak of circadian rhythm of neuronal firing in suprachiasmatic nucleus (SCN) brain slices. The phase response curve (PRC) for ramelteon (90?μg/mouse, subcutaneous [sc]) on circadian wheel-activity rhythms shows maximal sensitivity during the late mid to end of the subjective day, between CT8 and CT12 (phase advance), and late subjective night and early subjective day, between CT20 and CT2 (phase delay), using a 3-day-pulse treatment regimen in C3H/HeN mice. The PRC for ramelteon resembles that for melatonin in C3H/HeN mice, showing the same magnitude of maximal shifts at CT10 and CT2, except that the range of sensitivity for ramelteon (CT8-CT12) during the subjective day is broader. Furthermore, in SCN brain slices in vitro, ramelteon (10 pM) administered at CT10 phase advances (5.6?±?0.29?h, n?=?3) and at CT2 phase delays (-3.2?±?0.12?h, n?=?6) the peak of circadian rhythm of neuronal firing, with the shifts being significantly larger than those induced by melatonin (10 pM) at the same circadian times (CT10: 2.7?±?0.15?h, n?=?4, p?相似文献   

4.
The phase of the mammalian circadian pacemaker located in the suprachiasmatic nuclei (SCN) is controlled by a multitude of stimuli. While phase control is undoubtedly dominated by photic input, the serotonergic input from the raphe nuclei also influences SCN clock phase. In this article I review the evidence for serotonergic modulation of the SCN pacemaker, and the cellular mechanisms underlying these effects, obtained from in vitro experiments performed during the past decade. Serotonin can advance the SCN pacemaker when applied during the subjective day, and delay the pacemaker when applied during the subjective night. The daytime advances appear due to stimulation of 5HT7 receptors, activation of adenylate cyclase and protein kinase A, and opening of K+ channels. The synthesis of new proteins may also be critical for these phase shifts. Serotonergic phase advances can be inhibited by a variety of other modulatory inputs to the SCN, including neuropeptide Y, melatonin, and glutamate. Together, these data demonstrate that SCN circadian pacemaker phase is controlled by a complex interplay between multiple afferent stimuli, and that serotonin plays a critical role in this process.  相似文献   

5.
The phase of the mammalian circadian pacemaker located in the suprachiasmatic nuclei (SCN) is controlled by a multitude of stimuli. While phase control is undoubtedly dominated by photic input, the serotonergic input from the raphe nuclei also influences SCN clock phase. In this article I review the evidence for serotonergic modulation of the SCN pacemaker, and the cellular mechanisms underlying these effects, obtained from in vitro experiments performed during the past decade. Serotonin can advance the SCN pacemaker when applied during the subjective day, and delay the pacemaker when applied during the subjective night. The daytime advances appear due to stimulation of 5HT7 receptors, activation of adenylate cyclase and protein kinase A, and opening of K+ channels. The synthesis of new proteins may also be critical for these phase shifts. Serotonergic phase advances can be inhibited by a variety of other modulatory inputs to the SCN, including neuropeptide Y, melatonin, and glutamate. Together, these data demonstrate that SCN circadian pacemaker phase is controlled by a complex interplay between multiple afferent stimuli, and that serotonin plays a critical role in this process.  相似文献   

6.
The geniculohypothalamic tract (GHT) is a projection from the intergeniculate leaflet to the suprachiasmatic nucleus (SCN). The GHT exhibits neuropeptide Y (NPY) immunoreactivity and appears to communicate photic information to the SCN. Microinjection of NPY into the SCN has been found to phase shift circadian rhythms of hamsters housed in constant light in a manner similar to the phase shifts produced by pulses of darkness or triazolam injections. In the present study, NPY was injected into the SCN of Syrian hamsters housed in constant darkness and was found to produce phase shifts similar to those seen in hamsters housed in constant light. Microinjections were not followed by wheel running during the subjective day (the time when NPY microinjections are followed by significant phase advances). These data suggest that NPY produces phase shifts by some mechanism other than by inducing wheel running or by inhibiting the response of SCN neurons to light and supports a role for NPY in nonphotic shifting of the circadian clock.  相似文献   

7.
Cocaine abuse is highly disruptive to circadian physiological and behavioral rhythms. The present study was undertaken to determine whether such effects are manifest through actions on critical photic and nonphotic regulatory pathways in the master circadian clock of the mouse suprachiasmatic nucleus (SCN). Impairment of SCN photic signaling by systemic (intraperitoneal) cocaine injection was evidenced by strong (60%) attenuation of light-induced phase-delay shifts of circadian locomotor activity during the early night. A nonphotic action of cocaine was apparent from its induction of 1-h circadian phase-advance shifts at midday. The serotonin receptor antagonist, metergoline, blocked shifting by 80%, implicating a serotonergic mechanism. Reverse microdialysis perfusion of the SCN with cocaine at midday induced 3.7 h phase-advance shifts. Control perfusions with lidocaine and artificial cerebrospinal fluid had little shifting effect. In complementary in vitro experiments, photic-like phase-delay shifts of the SCN circadian neuronal activity rhythm induced by glutamate application to the SCN were completely blocked by cocaine. Cocaine treatment of SCN slices alone at subjective midday, but not the subjective night, induced 3-h phase-advance shifts. Lidocaine had no shifting effect. Cocaine-induced phase shifts were completely blocked by metergoline, but not by the dopamine receptor antagonist, fluphenazine. Finally, pretreatment of SCN slices for 2 h with a low concentration of serotonin agonist (to block subsequent serotonergic phase resetting) abolished cocaine-induced phase shifts at subjective midday. These results reveal multiple effects of cocaine on adult circadian clock regulation that are registered within the SCN and involve enhanced serotonergic transmission.  相似文献   

8.
Production and release of many mammalian hormones exhibit circadian rhythms controlled by a pacemaker located in the suprachiasmatic nuclei (SCN) of the hypothalamus. Under conditions when the circadian pacemaker free-runs with a period close to, but not equal to 24 h, subjective day and night may not be identical with the environmental day and night. The present study was aimed to define the phase and state of the circadian pacemaker when the circadian system is experiencing subjective night and to ascertain whether and how such a defined subjective night depends on the photoperiod. The results indicate that the subjective night may be defined as the time interval when i) light stimuli can reset the circadian system, ii) pineal melatonin production and photic induction of the c-Fos gene in the ventrolateral SCN are high, and iii) the spontaneous c-Fos protein production in the dorsomedial SCN is low. Such a defined subjective night and, logically, the whole circadian pacemaking system depend on the photoperiod and hence on the season of the year which the animals are experiencing.  相似文献   

9.
The effects of light on the circadian pacemaker in the suprachiasmatic nucleus (SCN) are mediated by the retinohypothalamic tract (RHT) and by the retinogeniculosuprachiasmatic tract (RGST). The neurotransmitter of the RGST is neuropeptide Y. The RHT may contain glutamate and aspartate. Recent evidence indicates that acetylcholine could also be involved in phase shifting by light. We determined that intraventricular injections with an acetylcholine agonist, carbachol, induces phase advances during the subjective day and phase delays during the early subjective night. No differences were observed between phase shifts induced in constant darkness and those induced in continuous light. A dose-response curve for carbachol was described at circadian time 6 (CT6). Injections at CT14 with various dosages of carbachol indicated the same dose dependency for this circadian time. Finally, carbachol injections in split animals resulted in similar responses of the two components of the split activity rhythm.  相似文献   

10.
The entrainment of some circadian rhythms in rodents and humans to the environmental light-dark cycle deteriorates during aging. Recent evidence suggests that the time-keeping ability of the circadian pacemaker maintains its endogenous period in both hamsters and humans. This suggests that any changes in the coupling between environmental cues and the circadian pacemaker are not due to changes in "clock speed," but rather due to a weakened coupling between the afferent systems relaying environmental information and the circadian pacemaker located in the suprachiasmatic nucleus. The suprachiasmatic nucleus receives serotonergic input from the raphe nuclei, and serotonergic 5HT1A,7 agonists have been reported to lose their circadian phase-adjusting efficacy during aging in hamsters. In the present study, the authors report the effects of a novel serotonergic agonist BMY 7378 on light-induced phase advances during aging in the hamster. The present report demonstrates that BMY 7378 is a highly efficacious chronobiotic that more than doubles the magnitude of light-induced phase shifts in hamster wheel-running activity rhythms. Light-induced phase advances in hamster wheel-running activity of at least 6 h following a single systemic dose of BMY 7378 are routinely observed. Furthermore, BMY 7378 potentiation of phase shifts is maintained in old hamsters, suggesting that BMY 7378 has a different site of activity than previously reported 5HT1A,7 agonists that have a diminished effect on circadian phase during aging.  相似文献   

11.
Nonphotic stimuli can reset and entrain circadian activity rhythms in hamsters and mice, and serotonin is thought to be involved in the phase-resetting effects of these stimuli. In the present study, the authors examined the effect of the serotonin agonist quipazine on circadian activity rhythms in three inbred strains of rats (ACI, BH, and LEW). Furthermore, they investigated the effect of quipazine on the expression of c-Fos in the mammalian circadian pacemaker, the suprachiasmatic nucleus (SCN). Quipazine reduced the amount of running wheel activity for 3 h after treatment, however, no long-term changes in tau and in the activity level were observed. More important, quipazine induced significant phase advances of the activity rhythm and c-Fos production in the SCN at the end of the subjective night (Circadian Time [CT] 22), whereas neither phase shifts nor c-Fos induction were observed during the subjective day. Quipazine injections also resulted in moderate phase delays at the beginning of the subjective night (CT 14). A similar phase-response characteristic typically can be observed for photic stimuli. By contrast, nonphotic stimuli normally produce phase advances during the subjective day. The present results suggest species differences between the hamster and the rat with respect to the serotonergic action on circadian timekeeping and indicate that serotonergic pathways play a role in the transmission of photic information to the SCN of rats.  相似文献   

12.
Loss of Dexras1 in gene-targeted mice impairs circadian entrainment to light cycles and produces complex changes to phase-dependent resetting responses (phase shifts) to light. The authors now describe greatly enhanced and phase-specific nonphotic responses induced by arousal in dexras1(-/-) mice. In constant conditions, mutant mice exhibited significant arousal-induced phase shifts throughout the subjective day. Unusual phase advances in the late subjective night were also produced when arousal has little effect in mice. Bilateral lesions of the intergeniculate leaflet (IGL) completely eliminated both the nonphotic as well as the light-induced phase shifts of circadian locomotor rhythms during the subjective day, but had no effect on nighttime phase shifts. The expression of FOS-like protein in the suprachiasmatic nucleus (SCN) was not affected by either photic or nonphotic stimulation in the subjective day in either genotype. Therefore, the loss of Dexras1 (1) enhances nonphotic phase shifts in a phase-dependent manner, and (2) demonstrates that the IGL in mice is a primary mediator of circadian phase-resetting responses to both photic and nonphotic events during the subjective day, but plays a different functional role in the subjective night. Furthermore, (3) the change in FOS level does not appear to be a critical step in the entrainment pathways for either light or arousal during the subjective day. The cumulative evidence suggests that Dexras1 regulates multiple photic and nonphotic signal-transduction pathways, thereby playing an essential role modulating species-specific characteristics of circadian entrainment.  相似文献   

13.
The reciprocal connections between the paraventricular thalamic nucleus (PVT) and the suprachiasmatic nuclei suggest that PVT may participate in the regulation of circadian rhythms. We studied in rats the effect of lesions of the anterior and midposterior regions of the PVT on phase shifts of drinking circadian rhythm induced by light pulses at circadian times 6, 12, and 23, as well as the phase shifts produced by electrical or glutamatergic stimulation of the anterior PVT at the same circadian times. Lesion of the anterior PVT abolishes the advances induced by light during late subjective night, whereas midposterior PVT lesions did not affect the phase shifts. Electrical stimulation or glutamate injections in the anterior PVT mimic the phase-shifting effects of light pulses. These results indicate the participation of the anterior PVT as a modulator of entrainment of circadian rhythms to light.  相似文献   

14.
The circadian pacemaker in the mammalian suprachiasmatic nuclei is responsive to photic and nonphotic stimuli. In the present study, the authors have investigated the response of activity onset and offset to application of nonphotic stimuli: the benzodiazepine midazolam and the opioid receptor agonist fentanyl. In correspondence with previous studies, both stimuli induced phase advances of the activity onset when given in the mid- to late subjective day. In contrast, activity offset did not phase advance following these injections. Injections during the early subjective day induced small phase delays of the activity onset, while large phase delays occurred in activity offset. Phase shifts, induced at both circadian time zones, were paralleled by an increase in the length of daily activity (alpha). The increase in a remained present during several days after the injection. The different kinetics in phase shifting of the activity onset and offset indicate complexity in phase-shifting behavior of the circadian pacemaker in response to nonphotic stimuli. Moreover, the data show responsiveness of the circadian system to GABA-ergic and opioid receptor activation, not only during the mid- to late subjective day but also during the early subjective day. The data implicate that the early subjective day is an interesting phase for analysis of molecular and biochemical processes involved in nonphotic phase shifting.  相似文献   

15.
Somatostatin is synthesized in the suprachiasmatic nucleus (SCN), a circadian pacemaker in mammals. To explore the functional significance of somatostatin in the circadian system, we examined rhythms of rat locomotor activity and electrical firing rate of SCN neurons in the brain slice after temporal depletion of somatostatin levels in the SCN. Intraperitoneal administration of cysteamine (200 mg/kg), a somatostatin depletor, significantly reduced somatostatin level in the in vivo SCN 5 min after injection and kept low level as long as 3 to 4 days. This administration, on the other hand, induced significant phase advances of about 51 min in the subsequent free-running rhythm of locomotor activity of the rat. A marked phase advance in the circadian rhythm of firing rate in the SCN was also observed after administration of cysteamine in coronal hypothalamic slices. These persistent phase shifts after administration of a somatostatin depletor may suggest that the change of somatostatin level in the SCN have a feedback influence on the circadian pacemaker.Abbreviations SCN suprachiasmatic nucleus - AVP arginine-vasopressin - VIP vasoactive intestinal polypeptide - CT circadian time - ZT zeitgeber time - i.p. intraperitoneally - 12L:12D 12 h light and 12 h dark - ANOVA analysis of variance  相似文献   

16.
Although spontaneous neural firing in the mammalian suprachiasmatic nucleus is accepted to peak once during mid-subjective day, dual activity peaks have been reported in horizontal brain slices taken from hamsters. These two peaks were interpreted as new evidence for the theory of dual circadian oscillators and raised the expectation that such activity would be found in other circadian model systems. We examined hamster, mouse, and rat slices in both coronal and horizontal planes and found a second peak of activity only in hamster horizontal preparations. This raises interesting questions about the relative circadian physiology of these important experimental animals.Abbreviations CT circadian time - SCN suprachiasmatic nucleus P.W. Burgoon and P.T. Lindberg contributed equally to this work.  相似文献   

17.
Light and serotonin were found to cause phase shifts of the circadian neural activity rhythm in the optic lobe of the cricket Gryllus bimaculatus cultured in vitro. The two phase-shifting agents yielded phase-response curves different in shape. Light induced phase delay and advance in the early and late subjective night, respectively, and almost no shifts in the subjective day, whereas serotonin phase-advances the clock during the subjective day and induced delay shifts during the subjective night. The largest phase advance and delay occurred at circadian time 21 and 12, respectively, for light, and circadian time 3 and 18, respectively, for serotonin. Quipazine, a nonspecific serotonin agonist, induced phase advance and phase delay at circadian time 3 and 18, respectively, like serotonin. (±)8-OH-DPAT, a specific 5-HT1A agonist, phase delayed by 2 h at the subjective night, but produced no significant phase shifts at the subjective day. When NAN-190, a specific 5-HT1A antagonist, was applied together with quipazine, it completely blocked the phase delay at circadian time 18, whereas it had no effect on the advance shifts induced by quipazine. The results suggest that the phase dependency of serotonin-induced phase shifts of the clock may be partly attributable to the daily change in receptor type. Accepted: 4 July 1999  相似文献   

18.
19.
The mammalian suprachiasmatic nucleus (SCN) is the major endogenous pacemaker that coordinates various daily rhythms including locomotor activity and autonomous and endocrine responses, through a neuronal and humoral influence. In the present study we examined the behavior of dispersed individual SCN neurons obtained from 1‐ to 3‐day‐old rats cultured on multi‐microelectrode arrays (MEAs). SCN neurons were identified by immunolabeling for the neuropeptides arginine‐vasopressin (AVP) and vasoactive intestinal polypeptide (VIP). Single SCN neurons cultured at low density onto an MEA can express firing rate patterns with different circadian phases. In these cultures we observed rarely synchronized firing patterns on adjacent electrodes. This suggests that, in cultures of low cell densities, SCN neurons function as independent pacemakers. To investigate whether individual pacemakers can be influenced independently by phase‐shifting stimuli, we applied melatonin (10 pM to 100 nM) for 30 min at different circadian phases and continuously monitored the firing rate rhythms. Melatonin could elicit phase‐shifting responses in individual clock cells which had no measurable input from other neurons. In several neurons, phase‐shifts occurred with a long delay in the second or third cycle after melatonin treatment, but not in the first cycle. Phase‐shifts of isolated SCN neurons were also observed at times when the SCN showed no sensitivity to these phase‐shifting stimuli in recordings from brain slices. This finding suggests that the neuronal network plays an essential role in the control of phase‐shifts.  相似文献   

20.
The present review examine the role of neuropeptide (NPY) in the circadian system, focusing on the interactions between light and NPY, especially during the subjective night. NPY has two different effects on the circadian system of mammals. On one hand, NPY, similar to behavioral stimulation, can change the phase of the clock by itself during the subjective day. On the other hand, NPY, again similar to behavioral stimulation, can inhibit the phase-shifting effect of light during the night. These effects of NPY may occur through different receptor subtypes, the Y2 receptor mediating day-time effects and the Y5 receptor mediating night-time effects of NPY. Our results also indicate that there are differences between in vivo and in vitro studies: NPY inhibition of in vivo light-induced phase shifts was observed only late in the subjective night; however, NPY applied in vitro could block light-induced phase shifts early in the subjective night as well. Contrasting these in vivo and in vitro results led us to suggest that the time of day of maximal effect of NPY in the intact animal may be a time when exogenous administration of NPY has little effect, due to saturation of the system. This situation could be an example of how the measurable output of the clock can be affected by the behavioral state in a different way at different time points, depending not only on the clock itself but also on behavior. If verified in human beings, the ability of NPY to modulate the circadian-clock responses to light may be of clinical importance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号