首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Purified human transcobalamin II receptor (TC II-R) binds to megalin, a 600 kDa endocytic receptor with an association constant, K(a), of 66 n M and bound(max) of 1.1 mole of TC II-R/mole of megalin both in the presence and absence of its ligand, transcobalamin II (TC II). Immunoprecipitation followed by immunoblotting of Triton X-100 extracts of the apical brush border membrane (BBM) from rabbit renal cortex revealed association of these two proteins. (35)[S]-TC II complexed with cobalamin (Cbl; Vitamin B(12)) bound to Sepharose-megalin affinity matrix and the binding was enhanced 5-fold when TC II-R was prebound to megalin. Megalin antiserum inhibited both the TC II-R-dependent and -independent binding of (35)[S]-TC II-Cbl to megalin, while TC II-R antiserum inhibited only the TC II-R-dependent binding. In rabbits with circulating antiserum to megalin, renal apical BBM megalin was present as an immune complex, but its levels were not altered. However, the protein levels of both TC II-R and the cation-independent mannose 6-phosphate receptor (CIMPR) were drastically reduced and the urinary excretion of TC II, albumin, and other low-molecular weight proteins was significantly increased. These results suggest that megalin contains a distinct single high-affinity binding site for TC II-R and their association in the native renal BBM is important for tubular reabsorption of many proteins, including TC II.  相似文献   

2.
Binding and uptake of transcobalamin II-bound cobalamin by HL-60 promyelocytic leukemia cells proceed through receptor-mediated endocytosis. The affinity constant of the receptor for transcobalamin II-cobalamin was found to be 6.1 liter/nmol and the maximal rate of uptake 12 pmol/10(9) cells/h. This uptake is mediated by about 3000 receptor sites per cell. Evidence is presented that the receptor recirculates from the cell surface to the lysosomes and vice versa. Upon differentiation induction of the cells by either DMSO in granulocytic direction or by 1,25-dihydroxy-vitamin D3 in monocytic direction a rapid decline in cellular uptake and cell surface binding of the protein-bound vitamin ensues. In particular the internalization of the complex decreases faster than all other observed signs of the ongoing differentiation process, such as reduction in the OKT9-reactive transferrin receptor, increase in lineage-specific surface markers, and decrease in [3H]thymidine incorporation and actual cell proliferation. The transcobalamin II receptor on the cell surface appears to be a proliferation-associated membrane component in human leukemic cells.  相似文献   

3.
Surface plasmon resonance biosensor analysis was used to evaluate the thermodynamics and binding kinetics of naturally occurring and synthetic cobalamins interacting with vitamin B(12) binding proteins. Cyanocobalamin-b-(5-aminopentylamide) was immobilized on a biosensor chip surface to determine the affinity of different cobalamins for transcobalamin, intrinsic factor, and nonintrinsic factor. A solution competition binding assay, in which a surface immobilized cobalamin analog competes with analyte cobalamin for B(12) protein binding, shows that only recombinant human transcobalamin is sensitive to modification of the corrin ring b-propionamide of cyanocobalamin. A direct binding assay, where recombinant human transcobalamin is conjugated to a biosensor chip, allows kinetic analysis of cobalamin binding. Response data for cyanocobalamin binding to the transcobalamin protein surface were globally fitted to a bimolecular interaction model that includes a term for mass transport. This model yields association and dissociation rate constants of k(a) = 3 x 10(7) M(-1) s(-1) and k(d) = 6 x 10(-4) s(-1), respectively, with an overall dissociation constant of K(D) = 20 pM at 30 degrees C. Transcobalamin binds cyanocobalamin-b-(5-aminopentylamide) with association and dissociation rates that are twofold slower and threefold faster, respectively, than transcobalamin binding to cyanocobalamin. The affinities determined for protein-ligand interaction, using the solution competition and direct binding assays, are comparable, demonstrating that surface plasmon resonance provides a versatile way to study the molecular recognition properties of vitamin B(12) binding proteins.  相似文献   

4.
Simultaneous addition of uniform latex particles derivatized with transferrin (0.532 micron) and transcobalamin II (0.345 micron) to leukemia L1210 cells resulted in segregated binding to individual microvilli as demonstrated by scanning electron microscopy. This segregated distribution suggests that individual microvilli are endowed either transferrin or transcobalamin II receptors but not both. Intracellular sorting and segregation of newly synthesized or recycling receptors probably occur prior to expression on the plasmalemma microvilli.  相似文献   

5.
Two IgG1K monoclonal antibodies to human transcobalamin II (TC II) were generated. These antibodies, 16.1 and 16.6, did not cross-react with the other two types of human cobalamin-binding proteins, intrinsic factor and R binder (TC I). Both antibodies cross-reacted with orangutan and simiang TC II but not with TC II from cynomolgus and howler monkeys, who are less closely related to humans. This finding suggests close structural similarity of human to ape TC II. The antibodies also did not react with TC II of lower mammals which included the horse, dog, guinea pig, and mouse; in particular, reaction did not occur with rabbit TC II, which has been considered structurally close to human TC II. Neither of the two antibodies was directed at the cobalamin-binding site of TC II. However, antibody 16.6 hindered TC II binding to cell receptor. This reactivity with the receptor-binding site should prove particularly useful in studies of that region of the TC II molecule.  相似文献   

6.
The present study investigated whether specific [3H]oxytocin binding sites previously demonstrated in estrogen-dominated rabbit uterus have properties expected of physiologic receptors coupled to uterine contraction. Microsomal membranes from estrogen-dominated rabbit uterus were found to contain high-affinity specific oxytocin binding sites with Kd = 2-3 nM. These sites were predominantly myometrial in locus. Specific oxytocin binding exhibited a pH optimum between 7.5 and 8.0. Mg2+ or Mn2+ was necessary for maximal specific [3H]oxytocin binding; in contrast, Ca2+ at submillimolar concentrations inhibited specific binding. Oxytocin binding sites were not detectable in microsomal membranes isolated from progesterone-dominated rabbit uterus. Relative binding and uterotonic activities of 10 synthetic neurohypophyseal hormone analogues were determined in estrogen-dominated rabbit uterus. A qualitative correlation was observed between binding and uterotonic responses. Angiotensin II and insulin did not compete with [3H]oxytocin for uterine binding sites. It is concluded that the specific high affinity [3H]oxytocin binding sites demonstrated in estrogen-dominated rabbit uterus have the selectivity for neurohypophyseal hormone analogues expected for physiologic receptors coupled to uterine contraction.  相似文献   

7.
Human skin fibroblasts and bone marrow cells were tested for their ability to synthesize the cobalamin-binding protein transcobalamin II. Cobalamin binders secreted in the media of cultured fibroblasts and of dextran-sedimented bone marrow cells in liquid culture could be identified as transcobalamin II on the basis of immunological, electrophoretical and chromatographical identity with serum transcobalamin II. The net secretion of transcobalamin II increased linearly with time of culture, up to 30 days after confluence. The reversible inhibition of transcobalamin II secretion by cycloheximide demonstrated that human fibroblasts are capable of de novo transcobalamin II synthesis. Addition of cyanocobalamin to the fibroblast culture medium induced a reduction of transcobalamin II net secretion, most likely due to preferred uptake of transcobalamin II saturated with cobalamin, as opposed to unsaturated protein. Addition of lysozymal enzyme inhibitors, ammonium chloride and chloroquine, resulted in a markedly increased secretion of transcobalamin II. In the culture medium of fibroblasts, obtained from two transcobalamin II-deficient patients, functionally deficient transcobalamin II was demonstrated on the basis of strongly reduced secretion of immunoreactive transcobalamin II, and the absence of apotranscobalamin II. Individual phenotypes in the culture media of the fibroblasts and bone marrow cells were identical to the corresponding serum transcobalamin II types.  相似文献   

8.
Pooled porcine serum was found to contain cobalophilin (also called transcobalamin I) and transcobalamin (also called transcobalamin II). The two proteins were harvested by batchwise absorption with vitamin B-12 covalently coupled to Sepharose, and then separated from each other either by gel filtration or using an immunoadsorbent. Both proteins were finally isolated as single proteins using a second vitamin B-12-Sepharose chromatography step. Cobalophilin and transcobalamin complexed with vitamin B-12 had molecular weights by gel filtration of 135 000 and 38 000 and by the formula of Svedberg 104 000 and 44 000, Stokes radii 4.97 nm and 2.65 nm, and sedimentation coefficients 5.39 S and 3.75 S, respectively. Electrofocusing resolved the cobalophilin complex into three main isoproteins isoelectric at pH 3.23, 3.42 and 3.69, and transcobalamin into only the main component isoelectric at a value as low as pH 3.47. Neither protein was capable of binding to the ileal intrinsic factor receptor.  相似文献   

9.
Membrane angiotensin II receptors were measured in trophoblastic tissues using a 2-step procedure. The first step consisted of the relative measurement performed at a fixed 125I[Sar1 Ile8]AII concentration of 0.15 nM in order to determine which tissues had a sufficient number of binding sites for studying the competition curves. The second consisted of determining the maximal binding (Bmax) and the dissociation constant (Kd) for [Sar1 Ile8] AII and the receptor subtypes in these tissues. The relative binding measurement revealed a significant number of occupied sites in rabbit fetal placenta and chorion (159 +/- 17 and 51 +/- 10 fmol/mg proteins) and in guinea pig chorion (132 +/- 12). The mean values of the other trophoblastic tissues were 3-10-fold lower in the 2 species. The competition curves obtained from tissues with high angiotensin II binding receptors showed the predominance of the AT2 subtype in rabbit fetal placenta (AT1/AT2 = 25/75) and of the AT1 receptor in guinea pig chorion (97/3) and in rabbit chorion (90/10). The [SAR1 Ile8] AII affinity (Kd) obtained from Scatchard plot analysis was 1.2 +/- 0.2 nM (n = 5) in fetal placenta and 1.2 (n = 1) in rabbit chorion and 0.5 +/- 0.1 (n = 3) in guinea pig chorion. In these tissues, the respective Bmax values were 1,281 +/- 115 (n = 5), 263 (n = 1) and 1,188 +/- 134 fmol/mg proteins (n = 3). These findings indicate that rabbit fetal placenta and chorion and guinea pig chorion are the most important sites of action for the renin-angiotensin system present in trophoblastic tissues.  相似文献   

10.
The normal human granulocyte vitamin B12-binding protein, transcobalamin I, and transcobalamin III, have been labeled with 125I-labeled N-succinimidyl 3-(4-hydroxyphenyl)propionate and utilized for plasma clearance studies performed with rabbits. Both moieties of 125I-labeled granulocyte vitamin B12-binding protein-[57Co]vitamin B12 were cleared rapidly from the plasma (is less than 90% by 5 min) by the liver. After 30 min, the bulk of the 125I reappeared in the plasma in small molecular weight (less than 1000) form and was rapidly excreted in the urine. After 60 min the bulk of the [57Co]vitamin B12 reappeared in the plasma bound to rabbit transcobalamin II and was subsequently taken up by a variety of tissues. Approximately 15% of the 125I-labeled granulocyte vitamin B12-binding protein-[57Co-a1vitamin B12 was excreted intact into the bile during the period from 10 to 80 min after injection. The hepatic uptake of the protein-vitamin B12 complex was blocked by the prior injection of desialyzed fetuin but not by native fetuin. Similar results were obtained with 125I-labeled transcobalamin III-[57Co]vitamin B12. Approximately 90% of both moieties of 125I-labeled transcobalamin I-[57Co]vitamin B12 had prolonged plasma survivals similar to that of 125I-labeled bovine serum albumin. After treatment with neuraminadase, both moieties of the 125I-labeled transcobalamin I-[57Co]vitamin B12 complex were cleared rapidly from the plasma by the liver in a manner that was indistinguishable from that observed in the case of untreated granulocyte vitamin B12-binding protein and transcobalamin III. These observations indicate that desialyzed transcobalamin I and the native forms of the granulocyte vitamin B12-binding protein and transcobalamin III are cleared from plasma by the mechanism elucidated by Ashwell and Morell (Ashwell, G., and Morell A. G. (1974) Adv. Enzymol. 41, 99-128) that is capable of clearing a wide variety of asialoglycoproteins. These observations have implications concerning the function of the human R-type vitamin B12-binding proteins, the nature of the enterohepatic circulation of vitamin B12, the biological significance of the mechanism described by Ashwell and Morell, and the etiology of the increased plasma concentration of human R-type protein that occurs frequently in chronic myelogenous leukemia and occasionally in hepatocellular carcinoma and other solid tumors.  相似文献   

11.
The plasma binding of newly absorbed, radioactively labelled vitamin B12 was studied during a urinary excretion (Schilling) test. Vitamin B12, after being absorbed from the gut, enters blood attached to transcobalamin II, which seems to be derived from the ileal enterocyte. The absorbed B12 re-enters the blood stream after the transcobalamin II-B12 complex is cleared by the liver and it is then excreted into the urine during the Schilling test.  相似文献   

12.
Little is known about the acquisition of cobalamin by the mammary gland and its secretion into milk. Human milk and plasma contain at least two types of cobalamin binding proteins: transcobalamin II (TC) and haptocorrin (HC). In plasma, TC is responsible for the transport of cobalamin to tissues and cells; however, cobalamin in milk is present exclusively bound to HC. We show that human mammary epithelial cells (HMEC) exhibit high affinity for TC; Scatchard analysis revealed a single class of binding sites for the TC-[(57)Co]cyanocobalamin complex with a dissociation constant (K(d)) of 4.9 x 10(-11) M. Uptake of the TC-[(57)Co]cyanocobalamin complex at 37 degrees C was saturable by 24 h. Binding of free [(57)Co]cyanocobalamin to HMEC was not saturable and very limited binding of the HC-[(57)Co]cyanocobalamin complex was observed. Expression of the haptocorrin gene by HMEC was confirmed by Northern blot and PCR analysis. Thus, a specific cell surface receptor for the TC-cobalamin complex exists in the mammary gland and once cobalamin is internalized, it may be transferred to HC and subsequently secreted into milk as a HC-cobalamin complex.  相似文献   

13.
Geographutoxin II (GTX II), a peptide toxin isolated from Conus geographus, inhibited [3H]saxitoxin binding to receptor sites associated with voltage-sensitive Na channels in rat skeletal muscle homogenates and rabbit T-tubular membranes with K0.5 values of 60 nM for homogenates and 35 nM for T-tubular membranes in close agreement with concentrations that block muscle contraction. Scatchard analysis of [3H]saxitoxin binding to T-tubular membranes gave values of KD = 9.3 nM and Bmax = 300 fmol/mg of protein and revealed a primarily competitive mode of inhibition of saxitoxin binding by GTX II. The calculated KD values for GTX II were 24 nM for T-tubules and 35 nM for homogenates, respectively. In rat brain synaptosomes, GTX II caused a similar inhibitory effect on [3H]saxitoxin binding at substantially higher concentrations (K0.5 = 2 microM). In contrast, binding of [3H]batrachotoxin A 20-alpha-benzoate and 125I-labeled scorpion toxin to receptor sites associated with Na channels in synaptosomes was not affected by GTX II at concentrations up to 10 microM. Furthermore, [3H]saxitoxin binding to membranes of rat superior cervical ganglion was only blocked 10% by GTX II at 10 microM. These results indicate that GTX II interacts competitively with saxitoxin in binding at neurotoxin receptor site 1 on the sodium channel in a highly tissue-specific manner. GTX II is the first polypeptide ligand for this receptor site and the first to discriminate between this site on nerve and adult muscle sodium channels.  相似文献   

14.
The hemolysis of red blood cells (RBC) induced by Cu(II) is modified by ceruloplasmin (Cp) and albumin. The time course of hemolysis for rabbit RBC by Cu(II) consisted of two parts, an induction period followed by a catastrophic lysis period. The induction period decreased and the lysis rate increased with increasing Cu(II) concentration. Cp or albumin, modified Cu(II) induced hemolysis, by increasing the duration of the induction period and decreasing the overall rate of hemolysis of RBC. The catastrophic lysis period coincided with a sharp increase in the formation of metHb within the cell and in a rapid uptake of Cu(II). The presence of Cp led to an increase in the induction period prior to the rapid increase in metHb formation and in Cu(II) uptake. Porcine Cp was prepared with either two or three nonprosthetic copper binding sites (sites where Cu(II) is easily removed by passing over Chelex-100). Cp with three nonprosthetic binding sites gave more protection than Cp with two. Likewise, albumin can be prepared with three and five nonprosthetic copper binding sites. The albumin with five sites gave more protection than the albumin with three sites.  相似文献   

15.
Transcobalamin II-cyanocobalamin was isolated from Cohn fraction III of pooled human plasma by affinity chromatography on cyanocobalamin-Sepharose and some conventional separation methods. The affinity ligand cyanocobalamin was coupled to AH-Sepharose by a thermolabile linkage. The unsaturated binding protein was absorbed at 4 degrees C and eluted from the column at 37 degrees C as transcobalamin II-cyanocobalamin complex. The final preparation had a specific cyanocobalamin-binding capacity of 0.98 mol cyanocobalamin/mol transcobalamin II, the yield was 55% and the purification index amounted to 1.1 . 10(6). In dodecyl sulphate polyacrylamide gel electrophoresis one major protein band was observed at a molecular weight of 37 000 and a faint band at a molecular weight of 29 000. In polyacrylamide gel isolectric focusing the pure preparation turned out to be heterogeneous with isoelectric points ranging from pH 6.2 to 6.8, possibly by the occurrence of isoproteins.  相似文献   

16.
The hydrophobic properties of mammalian transcobalamin IIs (TC II) were studied by chromatography of radioactive cyanocobalamin (CN[57Co]Cbl)-labeled serum on phenyl-Sepharose CL-4B. Mammalian holo TC IIs (CN[57Co]Cbl-TC II) exhibited species variability in their affinity for the hydrophobic matrix in the order: dog greater than mouse greater than human greater than rat greater than rabbit. Phenyl-Sepharose chromatography of the isolated CN[57Co]Cbl-TC II peaks from gel filtration of dog and rat serum showed no hydrophobic change in dog TC II, but an increase in hydrophobicity of rat TC II. Phenyl-Sepharose chromatography of CN[57Co]Cbl-labeled rabbit serum (holo TC II) and the unlabeled serum (apo TC II) showed apo TC II to be more hydrophobic than holo TC II as has been shown for human TC II (Begley et al., Biochem Biophys Res Commun 103:434-441, 1981). Thus mammalian holo TC IIs differ in their hydrophobic properties and apo TC II, in man and rabbit, is more hydrophobic than holo TC II. In addition, isolation of the TC II in some animal sera by gel filtration may result in a TC II that is more hydrophobic than the native molecule.  相似文献   

17.
Purified human placental transcobalamin II receptor (TC II-R) dimer of molecular mass 124 kDa bound to Sepharose-linked bacterial immunoglobulin (IgG) binding proteins protein A, protein G, and protein A/G. TC II-R dimer was detected directly, by blotting human placental and rabbit and rat kidney membrane proteins with 125I-protein A, or indirectly, using antiserum to TC II-R or IgG-Fc region and 125I-protein. TC II-R antiserum, but not protein A, protein G, protein A/G, or antiserum to the IgG-Fc region, when added to culture medium of human intestinal epithelial Caco-2 cells or umbilical vein endothelial cells, inhibited ligand binding. However, protein A, protein G, protein A/G, or antiserum to the Fc region inhibited the internalization of the ligand TC II-[57Co]cyanocobalamin. Taken together, these studies strongly suggest TC II-R is an IgG-like molecule that contains an Fc-like region which is important in ligand internalization but not binding.  相似文献   

18.
The vitamin B12-binding protein, transcobalamin II, is a trace component of plasma with a rapid turnover. This protein is essential for absorption, transport, cellular uptake and for recycling of vitamin B12 (cobalamin). Congenital transcobalamin II deficiency, an inborn error of metabolism is inherited as a recessive trait. The homozygous form of the deficiency is accompanied by severe clinical, hematological and immunological disturbances in the first months of life. Analytical, genetic, biochemical and clinical aspects of transcobalamin II in man and in vertebrates have been reviewed here. A genetic polymorphism for the protein has been found in man, rabbits and mice. Family studies revealed that the genetic patterns in man are determined by four polymorphic and several rare alleles. This genetic variability has been applied in paternity testing and in population studies. Transcobalamin II typing in families of patients with the inherited functional deficiency has led to identification of various deficient alleles in heterozygous carriers of the defects. Applying transcobalamin II typing after bone marrow transplantation demonstrated that this protein originates partly in the bone marrow. Subsequent investigations in cell culture have shown that human skin fibroblasts and cultured bone marrow synthesize and secret isotypes of a transport protein corresponding to the genetic isotypes observed in plasma. Comparison of transcobalamin II types in umbilical cord serum with the maternal types, has proven that the transcobalamin II activity in the cord serum is derived from the fetus. This finding will be of crucial importance in the early diagnosis of the deficiency syndrome.  相似文献   

19.
The binding of several corrinoids to the binding site of human intrinsic factor, transcobalamin or haptocorrin was investigated, p-Cresolyl cobamide and 2-amino-vitamin B12 are complete corrinoids, whose nucleotide at the lower face of the corrin ring is not coordinated to the cobalt. These corrinoids were greater than or equal to 10(3) times less efficiently recognized by intrinsic factor or transcobalamin than vitamin B12, which contains a Co-coordinated nucleotide. Pseudovitamin B12, with a weak Co-N coordination bond, revealed only moderate affinity to intrinsic factor. From these findings it is concluded that the cobamide binding to intrinsic factor and transcobalamin is strongly affected by the Co-N coordination bonds of their lower cobalt nucleotide ligands. We suggest that the Co-N coordination bond positions the nucleotide at a critical distance to the corrin ring, which is recognized by the binding proteins. Human haptocorrin, however, disclosed to distinctive selectivity regarding the different corrinoid structures. The protein bound all corrinoids with similar efficiency, independent of the strength of their Co-N coordinations, or the structures of their lower Co alpha ligands. Hence, the corrin ring, rather than a structural feature induced by the Co-N coordination, has to be considered responsible for the corrinoid binding to haptocorrin.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号