首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Suspensions enriched in isolated rabbit proximal tubules were subjected to varying degrees of oxygen deprivation-induced injury by incubating them under hypoxic conditions at pH 7.4 or pH 6.6 or under high density pelleted conditions and adenine nucleotide degradation was characterized. The major metabolite was hypoxanthine. Its levels increased with the extent of irreversible injury. It was not further degraded or salvaged. Recovery of cell ATP during reoxygenation was predominantly from the remaining cell nucleotides. Allopurinol did not alter the pattern of purine metabolism or the extent of cell injury. These observations provide information on the intrinsic purine metabolic capacity of renal tubule cells during oxygen deprivation which is relevant to understanding both the salvage mechanisms available in these cells as well as the contribution of purine metabolism to the pathogenesis of oxygen deprivation-induced tubule cell injury.  相似文献   

2.
Cultured rat precision-cut liver slices (PCLS) were used to study the influence of hypothermic preservation and reoxygenation at 37 degrees C on cellular metabolism and drug biotransformation. Cold hypoxic storage caused a depressed metabolism in rat liver slices, but reoxygenation for 8 h at 37 degrees C partially restored the levels of both ATP and GSH and totally restored the capacity to synthesize proteins. Metabolism of midazolam (CYP3A-dependent oxidation) by cold preserved liver slices was decreased by 30% but no further affected by reoxygenation, showing the same profile as freshly cut slices. Such a reoxygenation at 37 degrees C is accompanied by a dramatic loss of CYP3A2 protein while CYP3A1 protein was unaffected. These results suggest that CYP3A2 did not play a major role in midazolam oxidation. Such results are not consistent with a putative reoxygenation injury but rather with cold hypoxic damage. Since cold preserved liver slices did not respond to bacterial endotoxin stimulation (lipopolysaccharides), a minor role of non-parenchymal cells is suggested as mediators for deleterious effects developed during the cold storage.  相似文献   

3.
Cultured rat precision-cut liver slices (PCLS) were used to study the influence of hypothermic preservation and reoxygenation at 37°C on cellular metabolism and drug biotransformation. Cold hypoxic storage caused a depressed metabolism in rat liver slices, but reoxygenation for 8 h at 37°C partially restored the levels of both ATP and GSH and totally restored the capacity to synthesize proteins. Metabolism of midazolam (CYP3A-dependent oxidation) by cold preserved liver slices was decreased by 30% but no further affected by reoxygenation, showing the same profile as freshly cut slices. Such a reoxygenation at 37°C is accompanied by a dramatic loss of CYP3A2 protein while CYP3A1 protein was unaffected. These results suggest that CYP3A2 did not play a major role in midazolam oxidation. Such results are not consistent with a putative reoxygenation injury but rather with cold hypoxic damage. Since cold preserved liver slices did not respond to bacterial endotoxin stimulation (lipopolysaccharides), a minor role of non-parenchymal cells is suggested as mediators for deleterious effects developed during the cold storage.  相似文献   

4.
The degradation and short-term resynthesis of adenine nucleotides have been examined in a preparation of isolated rat heart myocytes. These myocyte preparations are essentially free of vascular and endothelial cells, contain levels of adenine nucleotides quite comparable to those of intact heart tissue, and retain these components remarkably well for up to 2 h of aerobic incubation in the presence of 1 mM Ca2+. When the cells are rapidly and synchronously de-energized by addition of uncoupler, an inhibitor of respiration and iodoacetate, cellular ATP is degraded almost quantitatively to AMP. The AMP is then converted to either intracellular adenosine, which accumulates to high concentrations before release to the cell exterior, or to IMP. The relative contribution of these two pathways depends on the metabolic state of the cells just prior to de-energization, with IMP production favored when respiring cells are de-energized and adenosine formation predominant when glycolyzing myocytes are subjected to this treatment. Cells de-energized by anaerobiosis in the absence of glucose lose ATP and adenine nucleotides with the production of IMP and adenosine. Upon reoxygenation, these cells restore a high adenylate energy charge and about 60% of control levels of GTP. There is a net resynthesis of 5-7 nmol of adenine nucleotides.mg-1 protein with a corresponding decline in IMP. Added [14C]adenosine labels the adenine nucleotide pool, but little net resynthesis of adenine nucleotides via adenosine kinase can be detected. It therefore appears that a rapid regeneration of adenine nucleotides can occur via the enzymes of the purine nucleotide cycle in heart myocytes and is limited by the size of the IMP pool retained.  相似文献   

5.
The predominance of the adenosine triphosphate/adenosine diphosphate (ATP/ADP) couple in cellular phosphorylation reactions, including those that form the basis for cellular energy metabolism, cannot be explained on thermodynamic grounds since a variety of "high energy phosphate" compounds (including ADP itself) found in the cell would, based on thermodynamic considerations, be at least as effective as ATP in serving as a phosphoryl donor. How then did present-day organisms come to rely on the ATP/ADP couple as the principal mediator of phosphorylation reactions? The early appearance of adenine compounds in the prebiotic environment is suggested by experiments indicating that, relative to other purine or pyridimine compounds, adenine derivatives are preferentially synthesized under simulated prebiotic conditions (Ponnamperuma et al., 1963). In addition to the roles of adenine nucleotides in phosphorylation reactions, other adenine derivatives (e.g. Coenzyme A, flavin adenine dinucleotide, puridine nucleotides) are employed in a variety of metabolic roles. The principal function of the adenine moiety in these latter cases is in the binding of these derivatives to the relevant enzyme. The capability for binding of the adenine moiety appears to have arisen early in evolution and been exploited in a multitude of contexts, a suggestion consistent with observed similarities between the binding sites of several enzymes employing adenine derivatives as substrate. The early availability of suitable adenine compounds in the biosphere and development of complementary binding sites on cellular proteins, coupled with the expected advantages in having a limited number of metabolites as central mediators of endergonic and exergonic metabolism could readily have led to the observed pre-eminence of adenine nucleotides in cellular energy metabolism.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
To evaluate the regulation of adenine nucleotide metabolism in relation to purine enzyme activities in rat liver, human erythrocytes and cultured human skin fibroblasts, rapid and sensitive assays for the purine enzymes, adenosine deaminase (EC 2.5.4.4), adenosine kinase (EC 2.7.1.20), hyposanthine phosphoribosyltransferase (EC 2.4.28), adenine phosphoribosyltransferase (EC 2.4.2.7) and 5'-nucleotidase (EC 3.1.3.5) were standardized for these tissues. Adenosine deaminase was assayed by measuring the formation of product, inosine (plus traces of hypoxanthine), isolated chromatographically with 95% recovery of inosine. The other enzymes were assayed by isolating the labelled product or substrate nucleotides as lanthanum salts. Fibroblast enzymes were assayed using thin-layer chromatographic procedures because the high levels of 5'-nucleotidase present in this tissue interferred with the formation of LaCl3 salts. The lanthanum and the thin-layer chromatographic methods agreed within 10%. Liver cell sap had the highest activities of all purine enzymes except for 5'-nucleotidase and adenosine deaminase which were highest in fibroblasts. Erythrocytes had lowest activities of all except for hypoxanthine phosphoribosyltransferase which was intermediate between the liver and fibroblasts. Erhthrocytes were devoid of 5'-nucleotidase activity. Hepatic adenosine kinase activity was thought to control the rate of loss of adenine nucleotides in the tissue. Erythrocytes had excellent purine salvage capacity, but due to the relatively low activity of adenosine deaminase, deamination might be rate limiting in the formation of guanine nucleotides. Fibroblasts, with high levels of 5'-nucleotidase, have the potential to catabolize adenine nucleotides beyond the control od adenosine kinase. The purine salvage capacity in the three tissues was erythrocyte greater than liver greater than fibroblasts. Based on purine enzyme activities, erythrocytes offer a unique system to study adenine salvage; fibroblasts to study adenine degradation; and liver to study both salvage and degradation.  相似文献   

7.
The atractyloside-insensitive accumulation of adenine nucleotides by rat liver mitochondria (as opposed to the exchange-diffusion catalysed by the adenine nucleotide translocase) has been measured by using the luciferin/luciferase assay as well as by measuring [14C]ATP uptake. In foetal rat liver mitochondria ATP is accumulated more rapidly than ADP, whereas AMP is not taken up. The uptake of ATP occurs against a concentration gradient, and the rate of ATP uptake is greater in foetal than in adult rat liver mitochondria. The accumulated [14C]ATP is shown to be present within the mitochondrial matrix space and is freely available to the adenine nucleotide translocase for exchange with ATP present in the external medium. The uptake is specific for ATP and ADP and is not inhibited by adenosine 5'-[beta gamma-imido] triphosphate, GTP, CTP, cyclic AMP or Pi, whereas dATP and AMP do inhibit ATP accumulation. The ATP accumulation is also inhibited by carbonyl cyanide m-chlorophenylhydrazone, KCN and mersalyl but is insensitive to atractyloside. The ATP uptake is concentration-dependent and exhibits Michaelis-Menten kinetics. The divalent cations Mg2+ and Ca2+ greatly enhance ATP accumulation, and the presence of hexokinase inhibits the uptake of ATP by foetal rat liver mitochondria. These latter effects provide an explanation for the low adenine nucleotide content of foetal rat liver mitochondria and the rapid increase that occurs in the mitochondrial adenine nucleotide concentration in vivo immediately after birth.  相似文献   

8.
The concentration of key intermediate products of energy metabolism is determined in the liver of young and old rats under normal conditions and 24h after fasting. A decrease in the stationary concentrations of glucose, glucose-6-phosphate, ATP, ADP and AMP and an increase in the concentrations of lactate, glutamate, alpha-glycerophosphate and Pi were found in the liver of rats in ageing. The carbohydrate metabolism response to fasting is also disturbed. The total content of adenine nucleotides it the rat liver during ageing is 25-30% lower. The deficit of adenine nucleotides is not associated with the activation of AMP-desaminase; it may result from both physiological and functional disturbances in the ageing liver.  相似文献   

9.
In this paper, we extend our previous observation on the mobilization of the ribose moiety from a purine nucleoside to a pyrimidine base, with subsequent pyrimidine nucleotides formation (Cappiello et al., Biochim. Biophys. Acta 1425 (1998) 273-281). The data show that, at least in vitro, also the reverse process is possible. In rat brain extracts, the activated ribose, stemming from uridine as ribose 1-phosphate, can be used to salvage adenine and hypoxanthine to their respective nucleotides. Since the salvage of purine bases is a 5-phosphoribosyl 1-pyrophosphate-dependent process, catalyzed by adenine phosphoribosyltransferase and hypoxanthine guanine phosphoribosyltransferase, our results imply that Rib-1P must be transformed into 5-phosphoribosyl 1-pyrophosphate, via the successive action of phosphopentomutase and 5-phosphoribosyl 1-pyrophosphate synthetase; and,in fact, no adenosine could be found as an intermediate when rat brain extracts were incubated with adenine, Rib-1P and ATP, showing that adenine salvage does not imply adenine ribosylation, followed by adenosine phosphorylation. Taken together with our previous results on the Rib-1P-dependent salvage of pyrimidine nucleotides, our results give a clear picture of the in vitro Rib-1P recycling, for both purine and pyrimidine salvage.  相似文献   

10.
To evaluate the regulation of adenine nucleotide metabolism in relation to purine enzyme activities in rat liver, human erythrocytes and cultured human skin fibroblasts, rapid and sensitive assays for the purine enzymes, adenosine deaminase (EC 2.5.4.4), adenosine kinase (EC 2.7.1.20), hypoxanthine phosphoribosyltransferase (EC 2.4.28), adenine phosphoribosyltransferase (EC 2.4.2.7) and 5′-nucleotidase (EC 3.1.3.5) were standardized for these tissues. Adenosine deaminase was assayed by measuring the formation of product, inosine (plus traces of hypoxanthine), isolated chromatographically with 95% recovery of inosine. The other enzymes were assayed by isolating the labelled product or substrate nucleotides as lanthanum salts. Fibroblast enzymes were assayed using thin-layer chromatographic procedures because the high levels of 5′-nucleotidase present in this tissue interferred with the formation of LaCl3 salts. The lanthanum and the thin-layer chromatographic methods agreed with-in 10%.Liver cell sap had the highest activities of all purine enzymes except for 5′-nucleotidase and adenosine deaminase which were highest in fibroblasts. Erythrocytes had lowest activities of all except for hypoxanthine phosphoribosyltransferase which was intermediate between the liver and fibroblasts. Erythrocytes were devoid of 5′-nucleotidase activity. Hepatic adenosine kinase activity was thought to control the rate of loss of adenine nucleotides in the tissue.Erythrocytes had excellent purine salvage capacity, but due to the relatively low activity of adenosine deaminase, deamination might be rate limiting in the formation of guanine nucleotides. Fibroblasts, with high levels of 5′-nucleotidase, have the potential to catabolize adenine nucleotides beyond the control of adenosine kinase. The purine salvage capacity in the three tissues was erythrocyte > liver > fibroblasts. Based on purine enzyme activities, erythrocytes offer a unique system to study adenine salvage; fibroblasts to study adenine degradation; and liver to study both salvage and degradation.  相似文献   

11.
Changes in the energy state of tissues in spontaneously hypertensive rats]   总被引:1,自引:0,他引:1  
The contents of adenine nucleotides (ATP, ADP, AMP), phosphocreatine (PCr) and creatine (Cr) in the heart, skeletal muscle, liver and spleen in spontaneously hypertensive (SHR) and normotensive (WKY) rats. The ATP/ADP ratio in cardiac tissue was lower in SHR compared with WKY, while myocardial contents of adenine nucleotides, PCr and Cr did not differ significantly between the groups. A lower ATP/ADP ratio in the skeletal muscle SHR of was accompanied by a reduction of PCr content comparing with these indices in WKY rats. The liver and spleen of SHR exhibited lower ATP contents and higher ADP and AMP levels compared with those ones in WKY rats, despite of the close values of adenine nucleotide pools (sigma AN = ATP + ADP + AMP). This redistribution of tissue adenine nucleotides was corresponded to lower energy charges (EC = (ATP + 0.5 ADP)/sigma AN) and ATP/ADP ratios in SHR group. The reduction of the energy state of tissues in SHR rats increased in the following rank: heart > skeletal muscle > liver > spleen, thus, reflecting progressive decrease of intensity of oxidative metabolism. The results suggest changes in the balance of rates of ATP formation and hydrolysis occur at the system level in primary hypertension. Probably, consequences of such rearrangement in energy metabolism are functional disturbances of plasma membrane and sacroplasmic reticulum well-documented in a number of experimental and clinical studies.  相似文献   

12.
The effect of 5-amino-4-imidazole-carboximide (AI-CA)-riboside on different pathways of purine metabolism (biosynthesis de novo, salvage pathways, adenosine metabolism, ATP catabolism) was studied in human B lymphoblasts (WI-L2). AICA-Riboside markedly decreased intracellular levels of 5-phosphoribosyl-1-pyrophosphate and in consequence affected purine biosynthesis de novo and purine salvage pathways. AICA-riboside inhibited incorporation of glycine into purine nucleotides, but when formate was used as the precursor of purine biosynthesis de novo, a biphasic effect was observed. The incorporation of formate into purine nucleotides was increased by AICA-riboside at concentrations up to 2 mM but decreased at higher concentrations. Salvage of the purine bases adenine, hypoxanthine, and guanine was markedly inhibited and utilization of extracellular adenosine in B lymphoblasts was reduced by AICA-riboside. AICA-riboside increased ribose 1-phosphate concentrations and increased degradation of prelabeled ATP. No effect on the intracellular levels of orthophosphate was found. Proliferation of WI-L2 lymphoblasts was only slightly affected at concentrations of AICA-riboside below 500 microM but markedly inhibited by higher concentrations.  相似文献   

13.
The role of adenosine as a possible physiological modulator was explored by measuring its concentration in different tissues during a 24-hour period. Initially the circadian variations of adenosine and other purine compounds such as inosine, hypoxanthine, uric acid and adenine nucleotides were studied in the rat blood. A daily cyclic response was observed, with low levels of adenosine from 08.00 - 20.00 h, followed by an increase from this time on. Inosine and hypoxanthine levels were elevated during the day and low at night. The uric acid changes observed indicate that the decrease in purine catabolism coincides with a decrease in inosine and hypoxanthine levels and an increase in adenosine. The blood adenine nucleotides, energy charge and phosphorylation potential remained constant during the day and showed oscillatory changes during the night. Similar studies were made in the liver, a primary source of circulating purines. Liver adenosine was high during the night while inosine and hypoxanthine remained low along the 24 hours. The results suggest that liver purine metabolism might participate in the maintenance and renewal of the blood purine pool and in the energy state of erythrocytes in vivo.  相似文献   

14.
Experiments were designed to examine the early events in the initiation of glutamate deamination in kidney. Perfused kidneys from methionine sulfoximine-treated rats formed ammonia from [15N]glutamate via the purine nucleotide cycle. The turnover of the 6-amino group of adenine nucleotides to yield ammonia occurred at the rate of 0.30 mumol/g of kidney/min. This rate is 3-4 times larger than in liver and is in agreement with published rates of the purine nucleotide cycle in kidney. The addition of 0.1 mM fluorocitrate to glutamate perfusions stimulated ammonia formation 3 1/2-fold. The turnover of the 6-amino group of adenine nucleotides increased during the first 5 min after adding fluorocitrate to form ammonia predominately from tissue glutamate and aspartate. This turnover correlates with a 3 1/2-fold increase in kidney tissue IMP levels. As the ATP/ADP ratio fell the purine nucleotide cycle was inhibited and glutamate dehydrogenase was stimulated to form ammonia stoichiometric with glutamate taken up from the perfusate. Ammonia formation via glutamate dehydrogenase occurred at a rate of 1.0 mumol/g of kidney/min. Fluorocitrate completely blocked ammonia formation from aspartate in perfusions. The perfused kidney formed ammonia from aspartate via the purine nucleotide cycle at a rate of 1.0 mumol/g of kidney/min. The results indicate a discrete role for aspartate in renal metabolism. Ammonia formation via the purine nucleotide cycle can occur at significant rates and equal to the rate of ammonia formation from glutamate via glutamate dehydrogenase.  相似文献   

15.
The influence of adenosine on the ribonucleotide metabolism in quiescent BALB/c 3T3 cells was studied. The cellular adenine ribonucleotides were labelled by pretreating the cells with [2-3H]-adenine. After addition of adenosine to the cell cultures, the amount and radioactivity of the cellular purine ribonucleotides and the radioactivity of the purine compounds in the medium were determined. It appeared that adenosine gave rise both to rapid catabolism of adenine ribonucleotides with inosine 5'-monophosphate (IMP) as an intermediate and to expansion of the cellular adenosine 5'-triphosphate (ATP) pool. The maximal rates and the apparent activation constants for the two processes have been determined. Experiments with varying concentrations of coformycin (an inhibitor of adenosine 5'-monophosphate [AMP] deaminase and adenosine deaminase) and of 5'-amino-5'-deoxyadenosine (an inhibitor of adenosine kinase), respectively, showed that each compound may almost completely inhibit the adenosine-induced catabolism. This effect can be obtained under conditions where there was little or no effect by the two inhibitors on the rate of expansion of the cellular ATP pool. These results may best be explained by assuming that the process of expansion of the ATP pool is independent of the induced catabolism of adenine ribonucleotides, even though both processes seem to depend on the phosphorylation of adenosine to AMP. The total increase in the pool size of ATP and of guanosine 5'-triphosphate (GTP), both caused by adenosine, seems not to have regulatory effect on adenine ribonucleotide catabolism.  相似文献   

16.
1. tRNA isolated from non-lactating bovine mammary gland competitively inhibits the formation of aminoacyl-tRNA in the rat liver system. 2. Non-lactating bovine mammary gland tRNA and twice-pyrophosphorolysed rat liver tRNA are unable to accept amino acids in a reaction catalysed by aminoacyl-tRNA synthetases from either rat liver or bovine mammary gland. Deacylated rat liver tRNA can however be aminoacylated in the presence of either enzyme. 3. Bovine mammary gland tRNA lacks the terminal adenine nucleotide at the 3′-terminus amino acid acceptor end, which can be replaced by incubation in the presence of rat liver nucleotide-incorporating enzyme, ATP and CTP. 4. The enzymically modified bovine tRNA (tRNApCpCpA) can bind labelled amino acids to form aminoacyl-tRNA, which can then transfer its labelled amino acids to growing polypeptide chains on ribosomes. 5. Molecules of rat liver tRNA or bovine mammary gland tRNA that lack the terminal adenine nucleotide or the terminal cytosine and adenine nucleotides inhibit the aminoacylation of normal rat liver tRNA to varying degrees. tRNA molecules lacking the terminal −pCpCpA nucleotide sequence exhibit the major inhibitory effect. 6. The enzyme fraction from bovine mammary gland corresponding to that containing the nucleotide-incorporating enzyme in rat liver is unable to catalyse the incorporation of cytosine and adenine nucleotides in pyrophosphorolysed rat liver tRNA and deacylated bovine tRNA. This fraction also markedly inhibits the action of the rat liver nucleotide-incorporating enzyme.  相似文献   

17.
The adenine derivatives adenosine 5'-triphosphate (ATP), adenosine 5'-diphosphate (ADP), adenosine 5'-monophosphate (AMP) and adenosine (AD), in concentrations of 10(-3)M and 10(-4)M caused significant and dose-related modifications in the basal acid secretion from isolated whole rat stomach. The first three purine derivatives, ATP, ADP and AMP significantly increased the spontaneous acid secretion. On the other hand, AD caused a significant reduction in the basal acid secretion. When ATP, ADP, AMP and AD were assayed in the presence of the adrenergic and cholinergic blocking agents, ergotamine, 10(-6)M, propranolol, 5 X 10(-7)M and atropine, 10(-6)M, all these purine derivatives, including AD, caused a significant increase in the basal acid secretion.  相似文献   

18.
The ability of brief hypothermic reperfusion (HtR) to restore hepatic energy metabolism following periods of cold hypoxic preservation was studied in isolated rat livers after storage times of 5, 10, and 24 h. In addition, investigations were performed on the effects of HtR used to restore liver oxidative metabolism in the middle of a prolonged (24 h) hypoxic preservation period. A histidine-lactobionate-raffinose solution was used for the initial cold portal flush in all groups. Results showed that cold hypoxia for either 5 or 10 h yielded livers capable of similar recoveries of ATP, energy charge, and total adenine nucleotides, but that HtR after 24 h cold preservation resulted in reduced regeneration of ATP, a lower energy charge, and a fall in tissue adenine nucleotides. When livers were stored for 24 h but subjected to brief HtR after either 5 or 10 h before return to hypoxic storage, improved recoveries of the energy metabolites were seen over those recorded after 24 h hypoxia alone. The fact that these improvements were not due to an improved supply of adenine nucleotide precursors was demonstrated by studying groups which were given HtR with perfusate containing precursors of adenine nucleotides (adenosine, adenine, and inosine) after 24 h cold hypoxia. These data are consistent with the hypothesis that poor metabolic recovery after long-term hepatic cold preservation results more from decreased mitochondrial oxidative phosphorylation than from a lack of precursors for adenine nucleotide resynthesis. In addition, restoring oxidative metabolism at hypothermia for brief periods can to some extent protect final metabolic status after prolonged storage.  相似文献   

19.
Pathways of purine nucleotide metabolism affecting the availability of ATP in the muscle tissue were studied in differentiating rat muscle cultures. The rate of de novo purine nucleotide synthesis and of AMP deamination were found to increase markedly with cell differentiation, but the rate of IMP dephosphorylation was similarly low in both myoblasts and contracting fibers. The above differentiation-associated alterations in purine nucleotide metabolism conform with the greater need for ATP as a source of energy in the contracting myotubes.  相似文献   

20.
The inability to account for large systematic variations in total purine nucleotide content of perfused rat hearts led to the demonstration that the soluble adenine nucleotides are in rapid equilibrium with a highly phosphorylated hetero-oligomeric derivative whose structure appears to be 3-phospho[glyceroyl-gamma-triphospho-5'-adenosine-3'-3-phosp ho]4glyceroyl- gamma-triphospho-5'-adenosine [Hutchinson, Morris & Mowbray (1986) Biochem. J. 234, 623-627]. Analogous techniques to those used with hearts for specifically labelling tissue purine nucleotides followed by extration and purification of nucleotides from the trichloroacetic acid-precipitable fraction show the existence of a corresponding rapid equilibrium between ATP and an oligomeric tetraphosphoadenosine derivative in perfused kidneys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号