首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The neutralization epitopes of the VP7 of human rotavirus RV-4 were studied by using five neutralizing mouse monoclonal antibodies to select virus variants resistant to neutralization by each of the antibodies. Antibody resistance patterns and sequence analysis of the RV-4 variants revealed that at least four sites on VP7, located at amino acids 94 (region A), 147 to 148 (region B), 213 (region C), and 291, are involved in neutralization of the human G1 rotavirus RV-4. The A-region site elicited antibody cross-reactive between G types and showed species-restricted immunodominance not related to carbohydrate attachment. The monotype 1b rotavirus M37 lacked this site. The B region contained strain-specific and cross-reactive sites, absent in monotype 1c rotaviruses. The C-region site was present in all G1 rotaviruses tested. Monotype 1a rotaviruses contained all these sites of neutralization. Virus monotype and sensitivity to monoclonal antibody neutralization usually related to the presence of a particular amino acid(s) at or next to the positions at which the mutations were selected in the virus variants.  相似文献   

3.
Genomic segment 4 of the porcine Gottfried strain (serotype 4) of porcine rotavirus, which encodes the outer capsid protein VP4, was sequences, and its deduced amino acid sequence was analyzed. Amino acid homology of the porcine rotavirus VP4 to the corresponding protein of asymptomatic or symptomatic human rotaviruses representing serotypes 1 to 4 ranged from 87.1 to 88.1% for asymptomatic strains and from 77.5 to 77.8% for symptomatic strains. Amino acid homology of the Gottfried strain to simian rhesus rotavirus, simian SA11 virus, bovine Nebraska calf diarrhea virus, and porcine OSU strains ranged from 71.5 to 74.3%. Antigenic similarities of VP4 epitopes between the Gottfried strain and human rotaviruses were detected by a plaque reduction neutralization test with hyperimmune antisera produced against the Gottfried strain or a Gottfried (10 genes) x human DS-1 rotavirus (VP7 gene) reassortant which exhibited serotype 2 neutralization specificity. In addition, a panel of six anti-VP4 monoclonal antibodies capable of neutralizing human rotaviruses belonging to serotype 1, 3, or 4 was able to neutralize the Gottfried strain. These observations suggest that the VP4 outer capsid protein of the Gottfried rotavirus is more closely related to human rotaviruses than to animal rotaviruses.  相似文献   

4.
Human rotavirus K8 strain represents a new VP4 serotype.   总被引:1,自引:0,他引:1       下载免费PDF全文
The complete VP4 gene of the human rotavirus (HRV) K8 strain (G1 serotype) was cloned and inserted into the baculovirus transfer vector pVL941 under the control of the polyhedrin promoter. A K8VP4 recombinant baculovirus was obtained by cotransfection of Spodoptera frugiperda (Sf9) cells with transfer vector DNA containing the K8VP4 gene and wild-type baculovirus DNA. Infection of Sf9 cells with this VP4 recombinant baculovirus resulted in the production of a protein that is similar in size and antigenic activity to the authentic VP4 of the K8 strain. Guinea pigs immunized with the expressed VP4 developed antibodies that neutralized the infectivity of the K8 strain. This antiserum neutralized HRV strains belonging to VP4 serotypes 1A, 1B, and 2 with efficiency eightfold or lower than that of the homologous virus, indicating that the human rotavirus K8 strain represents a distinct VP4 serotype (P3). In addition, low levels of cross-immunoprecipitation of the K8VP4 and its VP5 and VP8 subunits with hyperimmune antisera to HRV strains representing different VP4 serotype specificities also suggested that the K8 strain possesses a unique VP4 with few epitopes in common with other P-serotype strains.  相似文献   

5.
M E Hardy  G N Woode  Z C Xu    M Gorziglia 《Journal of virology》1991,65(10):5535-5538
In a previous study (S. Zheng, G. N. Woode, D. R. Melendy, and R. F. Ramig, J. Clin. Microbiol. 27:1939-1945, 1989), it was predicted that the VP7 serotype 6 bovine rotavirus strains NCDV and B641 do not share antigenically similar VP4s. In this study, gene 4 and the VP7 gene of B641 were sequenced, and the amino acid sequences were deduced and compared with those of NCDV and bovine rotavirus strain UK. Amino acid sequence homology in VP7 between the three strains was greater than 94%, confirming their relationship as VP7 serotype 6 viruses. VP4 of B641 showed amino acid homology to UK of 94% but only 73% homology to NCDV. Sequence comparison of a variable region of VP8 demonstrated amino acid homology of 53% between B641 and NCDV, whereas B641 and UK were 89% homologous in this region. These results confirm the earlier prediction that although the same serotype by VP7 reactivity, B641 and NCDV represent different VP4 serotypes. This difference in VP4 may have contributed to the lack of homotypic protection observed in calves, implicating VP4 as an important antigen in the active immune response to rotavirus infection in bovines.  相似文献   

6.
7.
【背景】人A组轮状病毒(Rotavirus Group A,RVA)是婴幼儿胃肠炎的主要病原体及发展中国家婴幼儿死亡的重要原因,目前无特效药物治疗,疫苗预防是唯一可行的预防感染方法。外衣壳蛋白VP7和VP4是疫苗设计的主要靶点,针对该基因加强RVA地方株分子流行病学监测十分必要。【目的】对锦州地方流行RVA株VP7和VP4基因进行型别鉴定和序列特征分析。【方法】收集锦州地区2018-2020年RVA感染腹泻患儿的粪便标本,提取病毒RNA,通过RT-PCR扩增VP7、VP4基因片段并测序,得到7株RVA VP7和VP4序列。使用在线基因分型工具Rota C V2.0对测序结果进行分型分析。应用BLAST、DNAStar、MEGA X、Bio Edit等生物软件与临床流行株及疫苗株进行系统发育分析及氨基酸序列比对分析。【结果】分型结果表明7株锦州地方株均为G9P[8]型,系统发育分析证实其VP7和VP4基因分别属于G9-Ⅵ和P[8]-3谱系,核苷酸序列相似性分别为99.32%-100%与99.41%-100%。JZ株VP7与疫苗株Rotavac和Rotasiil相比,在抗原表位区7-1a、7-1b、7-2中分别存在4个和3个氨基酸替换。JZ株VP4与疫苗株Rotarix和Rota Teq VP4氨基酸序列相比,发现7个和4个氨基酸替换,位于抗原表位区8-1和8-3。【结论】2018-2020年在辽宁锦州地区检测到7株G9P[8]型RVA株,VP7和VP4序列相似性高于99%,G9P[8]型可能是辽宁省锦州地区2018-2020年婴幼儿轮状病毒腹泻的主要流行基因型之一。与同基因型疫苗株比较,位于JZ株VP7和VP4抗原表位区的氨基酸位点差异对于野毒株免疫逃逸机制的研究具有意义。  相似文献   

8.
In 1983, we isolated a porcine rotavirus (strain YM) that was prevalent in several regions of Mexico, as judged by the frequency of its characteristic electropherotype. By a focus reduction neutralization test, rotavirus YM was clearly distinguished from prototype rotavirus strains belonging to serotypes 1 (Wa), 2 (S2), 3 (SA11), 4 (ST3), 5 (OSU), and 6 (NCDV). Minor, one-way cross-neutralization (1 to 5%) was observed when antisera to the various rotavirus strains were incubated with rotavirus YM. In addition, the YM virus was not neutralized by neutralizing monoclonal antibodies with specificity to serotypes 1, 2, 3, and 5. The subgroup of the virus was determined to be I by enzyme-linked immunosorbent assay. To characterize the serotype-specific glycoprotein of the virus at the molecular level, we cloned and sequenced the gene coding for VP7. Comparison of the deduced amino acid sequence with reported homologous sequences from human and animal rotavirus strains belonging to six different serotypes further supported the distinct immunological identity of the YM VP7 protein.  相似文献   

9.
10.
11.
12.

Background  

Porcine rotavirus infection is a significant cause of morbidity and mortality in the swine industry necessitating the development of effective vaccines for the prevention of infection. Immune responses associated with protection are primarily mucosal in nature and induction of mucosal immunity is important for preventing porcine rotavirus infection.  相似文献   

13.
Trypsin cleavage stabilizes the rotavirus VP4 spike   总被引:5,自引:0,他引:5       下载免费PDF全文
Trypsin enhances rotavirus infectivity by an unknown mechanism. To examine the structural basis of trypsin-enhanced infectivity in rotaviruses, SA11 4F triple-layered particles (TLPs) grown in the absence (nontrypsinized rotavirus [NTR]) or presence (trypsinized rotavirus [TR]) of trypsin were characterized to determine the structure, the protein composition, and the infectivity of the particles before and after trypsin treatment. As expected, VP4 was not cleaved in NTR particles and was cleaved into VP5(*) and VP8(*) in TR particles. However, surprisingly, while the VP4 spikes were clearly visible and well ordered in the electron cryomicroscopy reconstructions of TR TLPs, they were totally absent in the reconstructions of NTR TLPs. Biochemical analysis with radiolabeled particles indicated that the stoichiometry of the VP4 in NTR particles was the same as that in TR particles and that the VP8(*) portion of NTR, but not TR, particles is susceptible to further proteolysis by trypsin. Taken together, these structural and biochemical data show that the VP4 spikes in the NTR TLPs are icosahedrally disordered and that they are conformationally different. Structural studies on the NTR TLPs after trypsin treatment showed that spike structure could be partially recovered. Following additional trypsin treatment, infectivity was enhanced for both NTR and TR particles, but the infectivity of NTR remained 2 logs lower than that of TR particles. Increased infectivity in these particles corresponded to additional cleavages in VP5(*), at amino acids 259, 583, and putatively 467, which are conserved in all P serotypes of human and animal group A rotaviruses and also corresponded with a structural change in VP7. These biochemical and structural results show that trypsin cleavage imparts order to VP4 spikes on de novo synthesized virus particles, and these ordered spikes make virus entry into cells more efficient.  相似文献   

14.
Three cDNA clones comprising the VP8 subunit of the VP4 of human rotavirus strain KU (VP7 serotype G1; VP4 serotype P1A) G1 were constructed. The corresponding encoded peptides were designated according to their locations in the VP8 subunit as A (amino acids 1 to 102), B (amino acids 84 to 180), and C (amino acids 150 to 246 plus amino acids 247 to 251 from VP5). In addition, cDNA clones encoding peptide B of the VP8 subunit of the VP4 gene from human rotavirus strains DS-1 (G2; P1B) and 1076 (G2; P2) were also constructed. These DNA fragments were inserted into plasmid pGEMEX-1 and expressed in Escherichia coli. Western immunoblot analysis using antisera to rotavirus strains KU (P1A), Wa (P1A), DS-1 (P1B), 1076 (P2), and M37 (P2) demonstrated that peptides A and C cross-reacted with heterotypic human rotavirus VP4 antisera, suggesting that these two peptides represent conserved epitopes in the VP8 subunit. In contrast, peptide B appears to be involved in the VP4 serotype and subtype specificities, because it reacted only with the corresponding serotype- and subtype-specific antiserum. Antiserum raised against peptide A, B, or C of strain KU contained a lower level of neutralizing activity than did that induced by the entire VP8 subunit. In addition, the serotype-specific neutralizing activity of anti-KU VP8 serum was ablated after adsorption with the KU VP8 protein but not with a mixture of peptides A, B, and C of strain KU, suggesting that most of the serotype-specific epitopes in the VP8 subunit are conformational and are dependent on the entire amino acid sequence of VP8.  相似文献   

15.
The group A rotaviruses are composed of at least seven serotypes. Serotype specificity is defined mainly by an outer capsid protein, VP7. In contrast, the other surface protein, VP3 (775 amino acids), appears to be associated with both serotype-specific and heterotypic immunity. To identify the cross-reactive and serotype-specific neutralization epitopes on VP3 of human rotavirus, we sequenced the VP3 gene of antigenic mutants resistant to each of seven anti-VP3 neutralizing monoclonal antibodies (N-MAbs) which exhibited heterotypic or serotype 2-specific reactivity, and we defined three distinct neutralization epitopes on VP3. The mutants sustained single amino acid substitutions at position 305, 392, 433, or 439. Amino acid position 305 was critical to epitope I, whereas amino acid position 433 was critical to epitope III. In contrast, epitope II appeared to be more dependent upon conformation and protein folding because both amino acid positions 392 and 439 appeared to be critical. These four positions clustered in a relatively limited area of VP5, the larger of the two cleavage products of VP3. At the positions where amino acid substitutions occurred, there was a correlation between amino acid sequence homology among different serotypes and the reactivity patterns of various viruses with the N-MAbs used for selection of mutants. A synthetic peptide (amino acids 296 to 313) which included the sequence of epitope I reacted with its corresponding N-MAb, suggesting that the region contains a sequential antigenic determinant. These data may prove useful in current efforts to develop vaccines against human rotavirus infection.  相似文献   

16.
cDNA clones representing the VP8 and VP5 subunits of VP4 of symptomatic human rotavirus strain KU (VP7 serotype 1 and VP4 serotype 1A) or DS-1 (VP7 serotype 2 and VP4 serotype 1B) or asymptomatic human rotavirus strain 1076 (VP7 serotype 2 and VP4 serotype 2) were constructed and inserted into the pGEMEX-1 plasmid and expressed in Escherichia coli. Immunization of guinea pigs with the VP8 or VP5 protein of each strain induced antibodies that neutralized the rotavirus from which the VP4 subunits were derived. In a previous study (M. Gorziglia, G. Larralde, A.Z. Kapikian, and R. M. Chanock, Proc. Natl. Acad. Sci. USA 87:7155-7159, 1990), three distinct serotypes and one subtype of VP4 outer capsid protein were identified among 17 human rotavirus strains that had previously been assigned to five distinct VP7 serotypes. The results obtained by cross-immunoprecipitation and by neutralization assay with antisera to the VP8- and VP5-expressed proteins suggest that the VP8 subunit of VP4 contains the major antigenic site(s) responsible for serotype-specific neutralization of rotavirus via VP4, whereas the VP5 subunit of VP4 is responsible for much of the cross-reactivity observed among strains that belong to different VP4 serotypes.  相似文献   

17.
18.
19.
轮状病毒VP4亚单位疫苗研究进展   总被引:2,自引:0,他引:2  
轮状病毒是全球范围内导致5岁以下婴幼儿严重腹泻的主要病原体,造成了巨大的经济负担和社会负担。疫苗预防接种是控制轮状病毒感染最为有效的手段,但在轮状病毒导致的死亡率较高的非洲和亚洲部分低收入国家,目前已经上市的轮状病毒疫苗的有效性较低,且会增加肠套叠的风险。更加安全、有效的轮状病毒疫苗对于降低轮状病毒感染导致的发病率和死亡率具有重要意义。目前,各国科研人员试图从多个方面提高轮状病毒疫苗的有效性,非复制型基因工程亚单位疫苗是目前轮状病毒疫苗研究的主要方向。文中就目前轮状病毒亚单位疫苗,特别是基于VP4蛋白的亚单位疫苗的研究进展进行了综述,以期对轮状病毒疫苗的发展提供借鉴意义。  相似文献   

20.
Group C rotaviruses are an important cause of acute gastroenteritis in humans and animals. Fecal samples were collected from a porcine herd in July, 2009. Group C rotavirus RNA was detected using RT-PCR for the VP6 gene. The identified strain was further characterized by sequencing and phylogenetic analysis of the partial VP4, and complete VP6 and VP7 gene sequences. The partial VP4 and complete VP6 gene sequences of the CUK-5 strain were most closely related to those of the CUK-6 strain of group C rotaviruses. Phylogenetic analysis of the VP7 gene of the 2 strains (CUK-5 and CUK-6) and reference strains of group G rotavirus by the neighbor-joining method also confirmed that CUK-5 and CUK-6 belonged to type G5 and G1 strains, respectively. This study provides useful data for the prediction of newly appearing variants of porcine group C rotaviruses in neighboring countries through comparisons with GCRVs and fundamental research for vaccine development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号