首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ability for various ligands to modulate the binding of fructose 1,6-bisphosphate (Fru-1,6-P2) with purified rat liver pyruvate kinase was examined. Binding of Fru-1,6-P2 with pyruvate kinase exhibits positive cooperativity, with maximum binding of 4 mol Fru-1,6-P2 per enzyme tetramer. The Hill coefficient (nH), and the concentration of Fru-1,6-P2 giving half-maximal binding [FBP]1/2, are influenced by several factors. In 150 mM Tris-HCl, 70 mM KCl, 11 mM MgSO4 at pH 7.4, [FBP]1/2 is 2.6 microM and nH is 2.7. Phosphoenolpyruvate and pyruvate enhance the binding of Fru-1,6-P2 by decreasing [FBP]1/2. ADP and ATP alone had little influence on Fru-1,6-P2 binding. However, the nucleotides antagonize the response elicited by pyruvate or phosphoenolpyruvate, suggesting that the competent enzyme substrate complex does not favor Fru-1,6-P2 binding. Phosphorylation of pyruvate kinase or the inclusion of alanine in the medium, two actions which inhibit the enzyme activity, result in diminished binding of low concentrations of Fru-1,6-P2 with the enzyme. These effectors do not alter the maximum binding capacity of the enzyme but rather they raise the concentrations of Fru-1,6-P2 needed for maximum binding. Phosphorylation also decreased the nH for Fru-1,6-P2 binding from 2.7 to 1.7. Pyruvate kinase activity is dependent on a divalent metal ion. Substituting Mn2+ for Mg2+ results in a 60% decrease in the maximum catalytic activity for the enzyme and decreases the concentration of phosphoenolpyruvate needed for half-maximal activity from 1 to 0.1 mM. As a consequence, Mn2+ stimulates activity at subsaturating concentrations of phosphoenolpyruvate, but inhibits at saturating concentrations of the substrate or in the presence of Fru-1,6-P2. Both Mg2+ and Mn2+ diminish binding of low concentrations of Fru-1,6-P2; however, the concentrations of the metal ions needed to influence Fru-1,6-P2 binding exceed those needed to support catalytic activity.  相似文献   

2.
The sensitivity of the Mg(II)-dependent activity of rabbit liver fructose 1,6-bisphosphatase (FBPase, EC 3.1.3.11) to inhibition by fructose 2,6-bisphosphate (Fru-2,6-P2) was enhanced by EDTA and diminished to negligible levels by 0.5-2 microM Zn(II) added as another FBPase inhibitor. Fru-2,6-P2 was more efficient in the presence of the synergistic effector AMP: still, the Fru-2,6-P2 concentration inhibiting 50% changed from 3 microM (with EDTA) to higher than 50 microM (with Zn(II]. On the other hand, the Zn(II)-dependent FBPase activity was inhibited by Fru-2,6-P2 to a much lesser extent than the Mg(II)-dependent activity.  相似文献   

3.
An investigation was performed to elucidate some unusual phenomena which had been observed with phosphoenolpyruvate (PEP) carboxylase [EC 4.1.1.31] of Escherichia coli. (i) Fructose 1,6-bisphosphate (Fru-1,6-P2) and GTP--the allosteric activators--were competitive with each other in the activation. (ii) Some analogs of PEP such as DL-2-phospholactate and 2-phosphoglycolate, which behaved as inhibitors in the presence of the activator (acetyl-CoA or dioxane), activated the enzyme to some extent in the absence of the activator. (iii) Ammonium sulfate deprived the enzyme of sensitivity to Fru-1,6-P2 or GTP but had no effect on the sensitivity to other effectors. It was found that the activation by the analogs was lost upon desensitization of the enzyme to Fru-1,6-P2 by reaction with 2,4,6-trinitrobenzene sulfonate. The activation by the analogs was not observed in the presence of 200 mM ammonium sulfate. In the presence of lower concentrations (0.1 mM) of PEP, ammonium sulfate activated the enzyme at concentrations less than 700 mM but had an inhibitory effect on the desensitized enzyme. These findings suggest that the unusual phenomena described above are a result of binding of the phosphate esters and sulfate ions with the Fru-1,6-P2 site of the enzyme or the active site depending on the reaction conditions.  相似文献   

4.
The pyruvate kinase (ATP: pyruvate 2-O-phosphotransferase, EC 2.7.1.40) from Streptococcus lactis C10 had an obligatory requirement for both a monovalent cation and divalent cation. NH+4 and K+ activated the enzyme in a sigmoidal manner (nH =1.55) at similar concentrations, whereas Na+ and Li+ could only weakly activate the enzyme. Of eight divalent cations studied, only three (Co2+, Mg2+ and Mn2+) activated the enzyme. The remaining five divalent cations (Cu2+, Zn2+, Ca2+, Ni2+ and Ba2+) inhibited the Mg2+ activated enzyme to varying degrees. (Cu2+ completely inhibited activity at 0.1 mM while Ba2+, the least potent inhibitor, caused 50% inhibition at 3.2 mM). In the presence of 1 mM fructose 1,6-diphosphate (Fru-1,6-P2) the enzyme showed a different kinetic response to each of the three activating divalent cations. For Co2+, Mn2+ and Mg2+ the Hill interaction coefficients (nH) were 1.6, 1.7 and 2.3 respectively and the respective divalent cation concentrations required for 50% maximum activity were 0.9, 0.46 and 0.9 mM. Only with Mn2+ as the divalent cation was there significatn activity in the absence of Fru-1,6-P2. When Mn2+ replaced Mg2+, the Fru-1,6-P2 activation changed from sigmoidal (nH = 2.0) to hyperbolic (nH = 1.0) kinetics and the Fru-1,6-P2 concentration required for 50% maximum activity decreased from 0.35 to 0.015 mM. The cooperativity of phosphoenolpyruvate binding increased (nH 1.2 to 1.8) and the value of the phosphoenolpyruvate concentration giving half maximal velocity decreased (0.18 to 0.015 mM phosphoenolyruvate) when Mg2+ was replaced by Mn2+ in the presence of 1 mM Fru-1,6-P2. The kinetic response to ADP was not altered significantly when Mn2+ was substituted for Mg2+. The effects of pH on the binding of phosphoenolpyruvate and Fru-1,6-P2 were different depending on whether Mg2+ or Mn2+ was the divalent cation.  相似文献   

5.
Ribose 1,5-bisphosphate (Rib-1,5-P2), a newly discovered activator of rat brain phosphofructokinase, forms rapidly during the initiation of glycolytic flux and disappears within 20 s (Ogushi, S., Lawson, J.W. R., Dobson, G.P., Veech, R.L., and Uyeda, K. (1990) J. Biol. Chem. 265, 10943-10949). Activation of various mammalian phosphofructokinases and plant pyrophosphate-dependent phosphofructokinases by Rib-1,5-P2 was investigated. The order of decreasing potency for activation of rabbit muscle phosphofructokinase was: fructose (Fru) 2,6-P2, Rib-1,5-P2, Fru-1,6-P2, Glc-1,6-P2, phosphoribosylpyrophosphate, ribulose-1,5-P2, sedoheptulose-1,7-P2, and myoinositol-1,4-P2. The K0.5 values for activation by Rib-1,5-P2 of rat brain, rat liver, and rabbit muscle phosphofructokinases and potato and mung bean pyrophosphate-dependent phosphofructokinases were 64 nM, 230 nM, 82 nM, 710 nM, and 80 microM, respectively. The corresponding K0.5 values for Fru-2,6-P2 were 9, 8.6, 10, 7, and 65 nM, respectively. Rib-1,5-P2 was a competitive inhibitor of Fru-2,6-P2, binding to the muscle enzyme with Ki of 26 microM. Citrate increased the K0.5 for Rib-1,5-P2 without affecting the maximum activation, and AMP lowered the K0.5 for Rib-1,5-P2 without affecting the maximum activation. These effects of citrate and AMP were similar to those observed with Fru-2,6-P2 and different from those with Fru-1,6-P2. Rib-1,5-P2 is the second most potent activator of phosphofructokinase thus far discovered. The Rib-1,5-P2-activated conformation of the enzyme seems to be similar to that induced by Fru-2,6-P2, but different from that induced by Fru-1,6-P2.  相似文献   

6.
The occurrence of specific fructose-1,6-bisphosphatase [D-fructose-1,6-bisphosphate 1-phosphohydrolase, EC 3.1.3.11] (Fru-1,6-P2ase) in the small intestine was confirmed. 1. Fru-1,6-P2ase was isolated from mouse small intestine by a simple method. The isolated enzyme preparation was an electrophoretically homogeneous protein. 2. The molecular weight and subunit molecular weight were 140,000 and 38,000, respectively. 3. The intestinal enzyme was electrophoretically distinct from the liver enzyme. 4. The kinetic properties of the purified intestinal enzyme were compared with those of the mouse liver and muscle enzymes. 5. Mouse intestinal and muscle Fru-1,6-P2ases hydrolyzed ribulose-1,5-bisphosphate in addition to fructose-1,6-bisphosphate and sedoheptulose-1,7-bisphosphate.  相似文献   

7.
Four kinds of the enzyme reactions have been reported for the synthesis of Glc-1,6-P2. However, any activity of Glc-1-P dismutase and phosphoglucokinase was not observed in the beef liver homogenate. When the liver homogenate was incubated with Glc-1-P and Fru-1,6-P2, a significant amount of Glc-1,6-P2 was formed. The Glc-1,6-P2 synthesis activity from Glc-1-P and Fru-1,6-P2 was caused by the action of phosphoglucomutase present in the liver homogenate. The most remarkable activity for Glc-1,6-P2 synthesis was observed when the homogenate was incubated with Glc-1-P and glycerate-1,3-P2. The Glc-1,6-P2 synthesis activity from Glc-1-P and glycerate-1,3-P2 was separated from the major peak of phosphoglucomutase activity by DEAE-Sephadex chromatography. The peak of Glc-1,6-P2 synthesis activity, however, still retained phosphoglucomutase activity.

Glc-1,6-P2 phosphatase activity was mainly observed in the mitochondria and microsome fraction. The properties of Glc-1,6-P2 phosphatase were differentiated from those of acid phosphatase and Glc-6-P phosphatase.  相似文献   

8.
Kinetic properties of phosphofructokinase 2 (PFK2) and regulation of glycolysis by phorbol 12-myristate 13-acetate (PMA) and insulin were investigated in highly glycolytic HT29 colon cancer cells. PFK2 was found to be inhibited by citrate and, to a lesser extent, by phosphoenolpyruvate and ADP, but to be insensitive to inhibition by sn-glycerol phosphate. From these kinetic data, PFK2 from HT29 cells appears different from the liver form, but resembles somewhat the heart isoenzyme. Fructose 2,6-bisphosphate (Fru-2,6-P2) levels, glucose consumption and lactate production are increased in a dose-dependent manner in HT29 cells treated with PMA or insulin. The increase in Fru-2,6-P2 can be related to an increase in the Vmax. of PFK2, persisting after the enzyme has been precipitated with poly(ethylene glycol), without change in the Km for fructose 6-phosphate. The most striking effects of PMA and insulin on Fru-2,6-P2 production are observed after long-term treatment (24 h) and are abolished by actinomycin, cycloheximide and puromycin, suggesting that protein synthesis is involved. Furthermore, the effects of insulin and PMA on glucose consumption, lactate production, Fru-2,6-P2 levels and PFK2 activity are additive, and the effect of insulin on Fru-2,6-P2 production is not altered by pre-treatment of the cells with the phorbol ester. This suggests that these effects are exerted by separate mechanisms.  相似文献   

9.
H J Green  J Cadefau  D Pette 《FEBS letters》1991,282(1):107-109
Glucose 1,6-bisphosphate (Glc-1,6-P2) and fructose 2,6-bisphosphate (Fru-2,6-P2) concentrations display pronounced increases in rabbit fast-twitch muscle during chronic low-frequency stimulation. These increases are first seen after stimulation periods exceeding 3 h and reach maxima after 12-24 h of stimulation (approximately 3-fold for Glc-1,6-P2 and 5-fold for Fru-2,6-P2). Both metabolites regress to normal values after stimulation periods longer than 4 days. The fact that their increases coincide with the replenishment of glycogen after its initial depletion, could point to a role of Glc-1,6-P2 and Fru-2,6-P2 in glycogen metabolism.  相似文献   

10.
The influence that fructose 2,6-bisphosphate (Fru-2,6-BP) has on the aggregation properties of rat liver phosphofructokinase has been studied by observing the fluorescence polarization of the enzyme covalently bound to the fluorescent probe pyrenebutyric acid. Fru-2,6-BP dramatically slows the dissociation of the high molecular weight aggregate forms of the enzyme when the enzyme is diluted to 3.2 micrograms/ml (4 X 10(-8) M subunits). Furthermore, Fru-2,6-BP is a strong promoter of reassociation to tetramer and larger forms if the enzyme has been previously allowed to dissociate to the dimer in its absence. Unlike many other positive effectors of liver phosphofructokinase, Fru-2,6-BP is also able to overcome the tendency of MgATP to promote tetramer formation and instead stabilize a very high degree of high molecular weight aggregate formation even in the presence of MgATP. The apparent affinity of liver phosphofructokinase for Fru-2,6-BP was measured by its ability to promote reassociation and compared to that for Fru-1,6-BP. The apparent dissociation constant for Fru-2,6-BP under these conditions is 36 microM, about 40-fold lower than the value of 1.4 mM measured for Fru-1,6-BP. Both ligands demonstrate synergism with the substrate Fru-6-P, which can lower the dissociation constant for Fru-2,6-BP 9-fold to 4 microM and that for Fru-1,6-BP 5-fold to 0.28 mM. These data are interpreted to suggest that influencing the aggregation state of rat liver phosphofructokinase may be one way in which Fru-2,6-BP achieves its effects on the enzyme in vivo.  相似文献   

11.
An open reading frame (ORF) of snake muscle fructose-1,6-bisphosphatase (Fru-1,6-P2ase) was obtained by the RT-PCR method with degenerate primers, followed by RACE-PCR. The cDNA of Fru-1,6-P2ase, encoding 340 amino acids, is highly homologous to that of mammalian species, especially human muscle, with a few exceptions. Kinetic parameters of the purified recombinant enzyme, including inhibition behavior by AMP, were identical to that of the tissue form. Replacement of the N-terminal sequence of this enzyme by the corresponding region of rat liver Fru-1,6-P2ase shows that the activity was fully retained in the chimeric enzyme. The inhibition constant (Ki) of AMP at pH 7.5, however, increases sharply from 0.85 microM (wild-type) to 1.2 mM (chimeric enzyme). AMP binding is mainly located in the N-terminal region, and the allosteric inhibition was shown not to be merely determined by the backbone of this region. The fact that the chimeric enzyme could be activated at alkaline pH by AMP indicated that the AMP activation requires the global structure beyond the area.  相似文献   

12.
An elevated concentration of non-esterified fatty acids in the fed state elicited inhibition of cardiac, but not hepatic, pyruvate dehydrogenase complex (PDH). There was a modest decline in fructose 2,6-bisphosphate (Fru-2,6-P2) concentration in heart, and, to a lesser extent, in liver. Surgical stress decreased PDH activities and Fru-2,6-P2 concentrations in both heart and liver. Only the former response was abolished if postoperative lipolysis was inhibited. Surgery also decreased the [Fru-2,6-P2] in gastrocnemius: this response was abolished if lipolysis was inhibited.  相似文献   

13.
This study examines the influence of the growth promoter, lepidimoic acid, on the level of an important cytosolic signal metabolite, fructose 2,6-bisphosphate (Fru-2,6-P2), which can activate pyrophosphatedependent:phosphofructokinase (PFP, EC 2.7.1.90), and on glycolytic metabolism in Amaranthus caudatus seedlings. Fru-2,6-P2 concentrations were respectively increased by approximately 2-, 3- and 4-fold when the seedlings were treated with 0.3, 3 and 30 mM lepidimoic acid. Exogenous lepidimoic acid also affected levels of glycolytic intermediates in the seedlings. The increase in fructose 1,6-bisphosphate and decreases in fructose 6-phosphate and glucose 6-phosphate were found in response to the elevated concentration of lepidimoic acid. These results suggest that lepidimoic acid may affect glycolytic metabolism in the Amaranthus seedlings by increasing the activity of PFP due to increasing level of Fru-2,6-P2.  相似文献   

14.
Complementary DNA sequence of anaerobically induced cytoplasmic maize aldolase was expressed under control of the tac promoter sequence in Escherichia coli using the pKK223-3 plasmid as a vehicle. Levels of recombinant protein expressed exceeded 20 mg of soluble aldolase per liter of culture. The purified recombinant enzyme displayed the expected molecular weight and tetrameric subunit assembly on the basis of mobilities on denaturing electrophoretic gels and gel filtration, respectively. Sequencing of the NH2 terminus and amino acid composition analysis of the recombinant protein including COOH-terminal peptides agreed with the cDNA sequence. Partial kinetic characterization based on product inhibition studies was consistent with the ordered uni-bi reaction mechanism expected of aldolases. Turnover with respect to substrates Fru-1,6-P2 and Fru-1-P by the recombinant enzyme is the highest reported to date for class I aldolases. Fru-1,6-P2 cleavage rate by recombinant cytoplasmic maize enzyme is three times greater than that of the chloroplast enzyme. Fru-1-P cleavage is 8-fold greater than that of the rabbit liver isozyme and 20-fold greater than that of the rabbit muscle isozyme to which maize aldolase exhibits the greatest homology. The implications of such a high Fru-1-P turnover on carbohydrate utilization under anaerobiosis is discussed.  相似文献   

15.
1. Insulin is able to stimulate lactate production and to enhance fructose 2,6-bisphosphate (Fru-2,6-P2) content in 3T3-L1 adipocytes. 2. Phorbol 12-myristate 13-acetate is more efficacious than insulin in rising Fru-2,6-P2 content and less effective in the stimulation of glycolysis. 3. 3T3-L1 adipocyte 6-phosphofructo-l-kinase appears to be very sensitive to exogenous Fru-2,6-P2. 4. Insulin treatment does not affect the maximum activity of 6-phosphofructo-1-kinase whereas it markedly increases the affinity of pyruvate kinase for phosphoenolpyruvate. 5. The role of Fru-2,6-P2 in the insulin induced enhancement of glycolytic flux is discussed.  相似文献   

16.
1H and 31P nuclear magnetic resonance was used to investigate the interaction of AMP and fructose 2,6-bisphosphate (Fru-2,6-P2) with bovine liver fructose-1,6-bisphosphatase. Mn2+ bound to fructose-1,6-bisphosphatase was used as a paramagnetic probe to map the active and AMP allosteric sites of fructose-1,6-bisphosphatase. Distances between enzyme-bound Mn2+ and the phosphorus atoms at C-6 of fructose-6-P and alpha-methyl-D-fructofuranoside 1,6-bisphosphate were identical, and the enzyme-Mn to phosphorus distance determined for the C-6 phosphorus atom of Fru-2,6-P2 was very similar to these values. Likewise, the enzyme-Mn to phosphorus distances for Pi, the C-1 phosphorus atom of alpha-methyl-D-fructofuranoside 1,6-bisphosphate, and the C-2 phosphorus atom of Fru-2,6-P2 agreed within 0.5 A. The distance between enzyme-bound Mn2+ and the phosphorus atom of AMP was significantly shorter than the distances obtained for any of the aforementioned ligands, but the presence of Fru-2,6-P2 caused the enzyme-Mn to phosphorus distance for AMP to lengthen markedly. NMR line broadening of AMP protons was studied at various temperatures. The dissociation rate constant was found to be greater than 20 s-1. It was concluded that Fru-2,6-P2 strongly affects the interaction of AMP with fructose-1,6-bisphosphatase and that the sugar most likely acts at the active site of the enzyme.  相似文献   

17.
1. The fructose-2,6-bisphosphate (Fru-2,6-P2) content of mesenteric lymph nodes was measured in rats. 2. The effects of Fru-2,6-P2 on the activity of 6-phosphofructo-1-kinase (PFK-1) from rat mesenteric lymph nodes were also studied. 3. The affinity of the enzyme for fructose-6-phosphate was increased by Fru-2,6-P2 whereas the inhibition of the enzyme with high concentrations of ATP was released by Fru-2,6-P2. 4. The activity of lymphocyte PFK-1 was highly stimulated in a simultaneous presence of low concentrations of AMP and Fru-2,6-P2. 5. These results show that rat lymphocyte PFK-1 is highly regulated with Fru-2,6-P2 which means that glycolysis in rat lymphocytes is controlled by Fru-2,6-P2.  相似文献   

18.
Modulation of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (6PF-2-K/Fru-2,6-P(2)ase) gene expression by diet composition and ration size was studied in the liver of gilthead sea bream, Sparus aurata. From five different types of diet supplied to fish, those with either high carbohydrate/low protein or high carbohydrate/low lipid content stimulated 6PF-2-K/Fru-2,6-P(2)ase expression at the levels of mRNA, immunodetectable protein and kinase activity as well as promoting higher fructose-2,6-bisphosphate (Fru-2,6-P(2)) values. The expression of the bifunctional enzyme and Fru-2,6-P(2) levels showed also direct dependence on the quantity of diet supplied. These findings demonstrate for the first time nutritional regulation of 6PF-2-K/Fru-2,6-P(2)ase at mRNA level by diet composition and ration size and suggest that the carnivorous fish S. aurata can adapt its metabolism, by stimulation of liver glycolysis, to partial substitution of protein by carbohydrate in the diet. In addition, the expression of 6PF-2-K/Fru-2,6-P(2)ase can be used as an indicator of nutritional condition.  相似文献   

19.
In the absence of AMP and Fru-2,6-P2, several amino-acids such as histidine, lysine, alanine, aspartic acid, and other molecules, as reduced glutathione or citrate, activate FBPase-1 from Mytilus galloprovincialis mantle. AMP decreases Vmax and Km for Fru-1,6-P2 both in the absence and in the presence of activators; but the addition of Fru-2,6-P2 decreases the affinity of the enzyme by its substrate. Na+ acts as a inhibitor reducing both Vmax and Km. The Km value is lower than the physiological level of Fru-1,6-P2, suggesting that the enzyme is operative but its activity is very reduced.  相似文献   

20.
Fructose-6-P binding sites of rat liver and bovine heart Fru-6-P,2-kinase:Fru-2,6-bisphosphatase were investigated with an affinity labeling reagent, N-bromoacetylethanolamine phosphate. The rat liver enzyme was inactivated 97% by the reagent in 60 min, and the rate of inactivation followed pseudo-first order kinetics. The bovine heart enzyme was inactivated 90% within 60 min, but the inactivation rate followed pseudo-first order up to 80% inactivation and then became nonlinear. The presence of fructose-6-P retarded the extent of the inactivation to approximately 40% in 60 min. In order to determine the amino acid sequence of the fructose-6-P binding site, both enzymes were reacted with N-bromo[14C]acetylethanolamine-P and digested with trypsin; radiolabeled tryptic peptides were isolated and sequenced. A single 14C-labeled peptide was isolated from the rat liver enzyme, and the amino acid sequence of the peptide was determined as Lys-Gln-Cys-Ala-Leu-Ala-Leu-Lys. A major and two minor peptides were isolated from bovine heart enzyme whose amino acid sequences were Lys-Gln-Cys-Ala-Leu-Val-Ala-Leu-Lys, Arg-Ile-Glu-Cys-Tyr-Lys, and Ile-Glu-Cys-Tyr-Lys, respectively. In all cases, N-bromoacetylethanolamine-P had alkylated the cysteine residues. The amount of bromo[14C]acetylethanolamine-P incorporated into rat liver and beef heart was 1.3 mol/mol of subunit and 2.1 mol/mol of subunit, respectively, and the incorporations in the presence of Fru-6-P were reduced to 0.34 mol/mol of subunit and 0.9 mol/mol of subunit, respectively. Thus, the main fructose-6-P binding site of rat liver and bovine heart enzymes was identical except for a single amino acid substitution of valine for alanine in the latter enzyme. This peptide corresponded to residues 105 to 113 from the N terminus of the known amino acid sequence of rat liver enzyme, but since the complete sequence of bovine heart enzyme is not known, the location of the same peptide in the heart enzyme cannot be assigned.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号