首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
高密度脂蛋白体外氧化修饰动力学研究   总被引:6,自引:1,他引:5  
在体外HDL在Cu^2+诱导下可发生氧化修饰,为了探讨体外务浆高密度脂蛋白(HDL)氧化修饰中几种产物的动力学改变,用Cu^2+与HDL保温2 ̄24h,分别观察了HDL氧化修饰过程中硫代巴比妥酸反应物质(TBARS),脂氢过氧化物(LOOH)、共轭二烯(CD)及相对电泳迁移率(REM)等的变化。结果显示,LOOH和CD两个指标动力学变化相似,呈现延滞期,扩增期和下降期三个时相,而TBARS和REM  相似文献   

2.
胸腺是细胞分化发育的场所,源于骨髓的前T细胞。在以胸腺上皮细胞为主体的基质细胞作用下,增殖、分化、成为成熟T细胞,迁移至外周。胸腺基质细胞通过细胞与细胞之间的直接接触和分泌细胞因子影响细胞分化发育的各个阶段。本文探讨了人胸腺上皮细胞培养上清液(TECSN)对鼠胸腺细胞、85、Be13、HDMar、Molt4、Reh以及Jurkat细胞株增殖的影响。取人胸腺组织,用0.15%的胰酶消化组织块后,将其接种到培养瓶中进行培养,收集上清液。将TECSN加到鼠胸腺细胞悬液中,2h后加3HTdR,观察鼠胸腺细胞自发性掺入3HTdR有无改变。同时将TECSN+ConA加入鼠胸腺细胞悬液中培养48h,收获细胞前18h加入3HTdR,测定CPM值。此外,TECSN加入85细胞株及其它细胞株悬液中,观察TECSN对这些细胞株增殖的影响。上述各实验均设有对照组(Tab.1)。结果表明:TECSN本身能增强鼠胸腺细胞3HTdR自发掺入,其3HTdRCPM值明显大于对照组(Fig.1)。TECSN单独使用不影响胸腺细胞增殖,ConA单独作用能促进鼠胸腺细胞增殖反应,而TECSN与ConA共同使用,胸腺  相似文献   

3.
通过培养的人主动脉平滑肌细胞(hASMC)及脐静脉内皮细胞(hUVEC),应用3H-TdR参入、Northernblot分析、逆转录多聚酶链反应(RT-PCR)、放射免疫分析(RIA)、和紫外比色法等技术观察了人主动脉中硫酸乙酰肝素蛋白聚糖(HSPG)对hASMC和hUVECDNA合成的作用及对血小板源生长因子(PDGF)、PDGF受体、转化生长因子β(TGF-β)、内皮素-1(ET-1)或碱性成纤维细胞生长因子(bFGF)基因表达和肾素-血管紧张系统(RAS)的影响,结果显示,HSPG明显抑制培养的hASMC基础的DNA合成(cpm值为:10385±3263vs,25541±6421,P<0.01)及外源性PDGF诱导的DNA合成(cpm值为:9878±1947vs.13481±44l0,P<0.05);抑制PDGFA链、TGF-Bp和ET-1mRNA表达,提高PDGFa和β受体mRNA的表达;显著降低hASMC培养液中血管紧张素Ⅱ(AngⅡ)的浓度和血管紧张素转换酶(ACE)的活性,推测HSPG抑制PDGFA链、TGF-β及ET-1mRNA表达,降低ACE活性及AngⅡ浓度是其抑制hASMC增殖的重要机  相似文献   

4.
文和群   《广西植物》1995,15(3):212-213
多叶猴耳环──猴耳环属一新种文和群(广西植物研究所分类研究室,桂林541006)PITHECELLOBIUMMULTIFOLIOLATUM-ANEWSPECIESOFPITHECELLOBIUMFROMGUANGXI,CHINAWenHequn(Gu...  相似文献   

5.
L-异亮氨酸产生菌选育的研究   总被引:6,自引:0,他引:6  
以黄色短杆菌(Brevibacteriumflavum)ATCC14067为出发菌株,经硫酸二乙酯(DES)、紫外线(UV)和亚硝基胍(NTG)逐级诱变处理,α-氨基-β-羟基戊酸(AHV)、S-2-氨基乙基-L-半胱氨酸(AEC)、磺胺胍(SG)、乙硫氨酸(Eth)、α-氨基丁酸(α-AB)、异亮氨酸氧肟酸(IleHx)等氨基酸结构类似物及琥珀酸为碳源平板定向筛选,获得一株L-异亮氨酸高产菌ZQ-4(AHV~γ、AEC~γ、SAM~γ、SG~γ、Eth~γ、α-AB~γ、IleHx~γ)在含13.5%葡萄糖培养基中,摇瓶发酵72h、L-异亮氨酸积累可达2.8-3.0%。  相似文献   

6.
L-异亮氨酸产生菌选育的研究   总被引:3,自引:0,他引:3  
以黄色短杆菌(Brevibacteriumflavum)ATCC14067为出发菌株,经硫酸二乙酯(DES)、紫外线(UV)和亚硝基胍(NTG)逐级诱变处理,α-氨基-β-羟基戊酸(AHV)、S-2-氨基乙基-L-半胱氨酸(AEC)、磺胺胍(SG)、乙硫氨酸(Eth)、α-氨基丁酸(α-AB)、异亮氨酸氧肟酸(IleHx)等氨基酸结构类似物及琥珀酸为碳源平板定向筛选,获得一株L-异亮氨酸高产菌ZQ-4(AHV~γ、AEC~γ、SAM~γ、SG~γ、Eth~γ、α-AB~γ、IleHx~γ)在含13.5%葡萄糖培养基中,摇瓶发酵72h、L-异亮氨酸积累可达2.8-3.0%。  相似文献   

7.
表皮生长因子(EGF)、转化生长因子-α(TGFα)、表皮生长因子受体(EGFR)和蛋白激酶C(PKC)与细胞生长、增殖分化调节和细胞癌变有密切关系。作者用免疫组织化学方法检测了细支气管肺泡细胞增生(BAH)和细支气管肺泡细胞癌(BAC)的EGF、TGFα、EGFR和PKC表达。结果表明:BAC中的EGF、TGFα阳性率和阳性强度以及EGFR、PKC阳性强度均明显高于BAH。BAH的重度不典型增生病例,其EGF、TGFα、EGFR和PKC均呈高表达。TGFα、EGFR和PKC三者在BAC和BAH中的表达存在明显相关性。提示:TGFα及其受体EGFR和PKC是细支气管肺泡细胞增生、恶性转化和肺泡癌细胞失控生长的重要因素。  相似文献   

8.
戊巴比妥钠对小鼠肝脏影响的组织化学研究   总被引:3,自引:1,他引:2  
实验用健康小鼠35只,分为正常对照组(A组)5只,1%戊巴比妥钠麻醉组(B组)10只,0.8%戊巴比妥钠麻醉组(C组)10只,0.4%戊巴比妥钠麻醉组(D组)10只。除正常对照组外,其余三组腹腔内注射成巴比妥钠60分钟后,分别断头取材,取肝右叶,恒冷箱切片,做SDH(琥珀酸脱氢酶)、LDH(乳酸脱氢酶)、ChE(胆碱酯酶)、糖原(PAS反应)、实验结果显示大剂量1%戊巴比妥钠组(B组),SDH、ChE的活性和糖原(PAS)反应比正常对照组相比显著下降。而LDH活性明显增强。其余各组均有相应的变化,提示成巴比妥钠对肝脏的形态和机能有一定程度的损害。  相似文献   

9.
TWONEWSPECIESFROMTRICHOSANTHES(CUCURBITACEAE)YuehChun-hsiHuangLu-qiChengChing-yung〔ABTRACT〕TrichosanthesreferactaYuehetL.Q.H...  相似文献   

10.
血管活性肠肽对兔支气管上皮细胞抗臭氧损伤的保护作用   总被引:6,自引:0,他引:6  
用支气管刷洗法收集新西兰兔支气管上皮细胞(BEC),以臭氧(O3)攻击培养的BEC,建立细胞损伤模型。测定BEC的3H释放率计算O3的细胞毒指数(CI)、测定细胞内丙二醛(MDA)的含量反映细胞氧化性损伤的程度,测定细胞内过氧化氢酶(CAT)活性及还原型和氧化型谷胱甘肽(GSH和GSSG)的含量反映细胞抗氧化能力。观察血管活性肠肽(VIP)预处理对BEC的细胞保护作用并初步探讨其保护机制。观察到:BEC的3H释放率与O3暴露时间成正比;O3暴露2h使MDA含量和GSSG含量明显增加,GSH减少;VIP预处理呈剂量依赖性降低O3暴露的CI值、降低MDA和GSSG含量、增加GSH及GSH/GSSG比值、增加CAT活性,显示出细胞保护效应;VIP的保护效应可被放线菌素D(A-D)或蛋白激酶C阻断剂H7部分取消。结果表明:O3暴露会导致BEC损伤,VIP可通过增强BEC的抗氧化能力而保护BEC,VIP的信号在细胞内的转导途径与基因转录及依赖PKC的酶蛋白磷酸化有关。  相似文献   

11.
To study the polymorphism of human cholinesterases (ChEs) at the levels of primary sequence and three-dimensional structure, a fragment of human butyrylcholinesterase (BuChE) cDNA was subcloned into the pEX bacterial expression vector and its polypeptide product analyzed. Immunoblot analysis revealed that the clone-produced BuChE peptides interact specifically with antibodies against human and Torpedo acetylcholinesterase (AChE). Rabbit polyclonal antibodies prepared against the purified clone-produced BuChE polypeptides interacted in immunoblots with denatured serum BuChE as well as with purified and denatured erythrocyte AChE. In contrast, native BuChE tetramers from human serum, but not AChE dimers from erythrocytes, interacted with these antibodies in solution to produce antibody-enzyme complexes that could be precipitated by second antibodies and that sedimented faster than the native enzyme in sucrose gradient centrifugation. Furthermore, both AChE and BuChE dimers from muscle extracts, but not BuChE tetramers from muscle, interacted with these antibodies. To reveal further whether the anti-cloned BuChE antibodies would interact in situ with ChEs in the neuromuscular junction, bundles of muscle fibers were microscopically dissected from the region in fetal human diaphragm that is innervated by the phrenic nerve. Muscle fibers incubated with the antibodies and with 125I-Protein A were subjected to emulsion autoradiography, followed by cytochemical ChE staining. The anti-cloned BuChE antibodies, as well as anti-Torpedo AChE antibodies, created patches of silver grains in the muscle endplate region stained for ChE, under conditions where control sera did not. These findings demonstrate that the various forms of human AChE and BuChE in blood and in neuromuscular junctions share sequence homologies, but also display structural differences between distinct molecular forms within particular tissues, as well as between similarly sedimenting molecular forms from different tissues.  相似文献   

12.
Trypanosoma cruzi infection triggers an intense production of pro-inflammatory cytokines mediated by T helper 1 lymphocytes, inducing the anti-inflammatory reflex of acetylcholine (ACh). The ACh concentration modulation is associated to the two major esterases, the acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). AChE H353N protein polymorphism is related to low Chagas chronic disease prognostic. In order to evaluate the correlation of plasmatic BuChE concentration and the presence of AChE H353N polymorphism in Chagas disease patients and healthy individuals, we studied two groups of individuals, one of 61 Chagas disease patients and another of 74 healthy individuals. Plasma concentration of BuChE was measured by the chemiluminescent method and AChE H353N polymorphism was investigated by PCR-RFLP and sequencing of the respective encoding AChE gene fragment. The BuChE concentration was statistically higher in Chagas disease patients, with no AChE genotype significant influence. AChE genotypes YT*A/YT*A, YT*A/YT*B and YT*B/YT*B, respectively, were expressed in 53 (86.88%), 7 (11.46%) and one (1.64%) chagasic patients, and in 68 (91.89%), 6 (8.10%) and none healthy individuals. BuChE activity may represent an important marker for chronic Chagas disease inflammatory process and prognostic. Lower BuChE concentration correlated with AChE YT*B allele, although without statistical power.  相似文献   

13.
Enzyme-linked immunosorbent assays for acetylcholinesterase (AChE) and for butyrylcholinesterase (BuChE) were markedly more specific than conventional assays using selective enzyme inhibitors. The new assays were used with blood and brain samples containing traces of one enzyme dominated by large amounts of the other. The results showed that human plasma does contain AChE (8 ng/ml), even though its major cholinesterase is BuChE (3,300 ng/ml). BuChE immunoreactivity was not detected in human red blood cells but occurred in all brain regions. The cerebellum was the richest region tested (540 ng of BuChE/g of tissue), whereas the cerebral cortex was the poorest (240 ng of BuChE/g). However, because of the small local AChE content (99 ng/g), BuChE was the major cortical cholinesterase. The picture was reversed in the putamen, where BuChE immunoreactivity (340 ng/g) was far outweighed by that of AChE (6,100 ng/g).  相似文献   

14.
A series of O,O-diethyl-1-(N-alpha-hydrohexafluoroisobutyryl)aminoalkylphos phonates (APh) has been synthesized and their interaction with human erythrocyte acetylcholinesterase (AChE) and with horse serum butyrylcholinesterase (BuChE) studied. Most of the APhs inactivated the cholinesterases irreversible through formation of the enzyme-inhibitor intermediate. The inactivation rate constants and the enzyme-inhibitor intermediate dissociation constants are calculated. The quantitative structure-activity relationships including both hydrophobic and calculated steric parameters of substituents are developed for APh--ChE interactions. Molecular mechanics (programme MM2) was used for determining steric parameters (Es). On the basis of QSAR models analysis it was concluded that hydrophobic interactions play an essential role in APh--AChE binding, whereas for APh--BuChE binding steric interactions are essential. Presence of at least two APh binding centres on the surface of AChE and BuChE is suggested.  相似文献   

15.
Rivastigmine is a very important drug prescribed for the treatment of Alzheimer’s disease (AD) symptoms. It is a dual inhibitor, in that it inhibits both acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). For our screening program on the discovery of new rivastigmine analogue hits for human butyrylcholinesterase (hBuChE) inhibition, we investigated the interaction of this inhibitor with BuChE using the complimentary approach of the biophysical method, saturation transfer difference (STD)-NMR and molecular docking. This allowed us to obtain essential information on the key binding interactions between the inhibitor and the enzyme to be used for screening of hit compounds. The main conclusions obtained from this integrated study was that the most dominant interactions were (a) H-bonding between the carbamate carbonyl of the inhibitor and the NH group of the imidazole unit of H434, (b) stacking of the aromatic unit of the inhibitor and the W82 aromatic unit in the choline binding pocket via π-π interactions and (c) possible CH/π interactions between the benzylic methyl group and the N-methyl groups of the inhibitor and W82 of the enzyme.  相似文献   

16.
Wild-type human butyrylcholinesterase (BuChE) has proven to be an efficient bioscavenger for protection against nerve agent toxicity. Human acetylcholinesterase (AChE) has a similar potential. A limitation to their usefulness is that both cholinesterases (ChEs) react stoichiometrically with organophosphosphorus (OP) esters. Because OPs can be regarded as pseudo-substrates for which the dephosphylation rate constant is almost zero, several strategies have been attempted to promote the dephosphylation reaction. Oxime-mediated reactivation of phosphylated ChEs generates a turnover, but it is too slow to make pseudo-catalytic scavengers of pharmacological interest. Alternatively, it was hypothesized that ChEs could be converted into OP hydrolases by using rational site-directed mutagenesis based upon the crystal structure of ChEs. The idea was to introduce a nucleophile into the oxyanion hole, at an appropriate position to promote hydrolysis of the phospho-serine bond via a base catalysis mechanism. Such mutants, if they showed the desired catalytic and pharmacokinetic properties, could be used as catalytic scavengers. The first mutant of human BuChE that was capable of hydrolyzing OPs was G117H. It had a slow rate. Crystallographic study of the G117H mutant showed that hydrolysis likely occurs by activation of a water molecule rather than direct nucleophilic attack by H117. Numerous BuChE mutants were made later, but none of them was better than the G117H mutant at hydrolyzing OPs, with the exception of soman. Soman aged too rapidly to be hydrolyzed by G117H. Hydrolysis was however accomplished with the double mutant G117H/E197Q, which did not age after phosphonylation with soman. Multiple mutations in the active center of human and Bungarus AChE led to enzymes displaying low catalytic activity towards OPs and unwanted kinetic complexities. A new generation of human AChE mutants has been designed with the assistance of molecular modelling and computational methods. According to the putative water-activation mechanism of G117H BChE, a new histidine/aspartate dyad was introduced into the active center of human AChE at the optimum location for hydrolysis of the OP adduct. Additional mutations were made for optimizing activity of the new dyad. It is anticipated that these new mutants will have OP hydrolase activity.  相似文献   

17.
The change in the expression of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) activities in neoplastic colon and lung prompted us to study the possible effect of cancer on the expression of cholinesterases (ChEs) in kidney. Samples of papillary renal cell carcinoma (pRCC), conventional RCC (cRCC), chromophobe RCC (chRCC) and renal oncocytoma (RON), beside adjacent non-cancerous tissues, were analyzed. In pRCC both AChE and BuChE activities were statistically increased; in cRCC and chRCC only AChE activity increased and in RON neither AChE nor BuChE activities were affected. Abundant amphiphilic AChE dimers (G(2)(A)) and fewer monomers (G(1)(A)) were identified in healthy kidney as well as in all tumour classes. Incubation with PIPLC revealed glycosylphosphatidylinositol in AChE forms. BuChE is distributed between principal G(4)(H), fewer G(1)(H), and much fewer G(4)(A) and G(1)(A) species. RT-PCR showed similar amounts of AChE-H, AChE-T and BuChE mRNAs in healthy kidney. Their levels increased in pRCC but not in the other tumour types. The data support the idea that, as in lung tumours, in renal carcinomas expression of ChE mRNAs, biosynthesis of molecular components and level of enzyme activity change according to the specific kind of cell from which tumours arise.  相似文献   

18.
Accompanying the gradual rise in the average age of the population of most industrialized countries is a regrettable progressive rise in the number of individuals afflicted with age-related neurodegenerative disorders, epitomized by Alzheimer's disease (AD) but, additionally, including Parkinson's disease (PD) and stroke. The primary therapeutic strategy, to date, involves the use of cholinesterases inhibitors (ChEIs) to amplify residual cholinergic activity. The enzyme, acetylcholinesterase (AChE), along with other elements of the cholinergic system is depleted in the AD brain. In contrast, however, its sister enzyme, butyrylcholinesterase (BuChE), that likewise cleaves acetylcholine (ACh), is elevated and both AChE and BuChE co-localize in high amounts with the classical pathological hallmarks of AD. The mismatch between increased brain BuChE and depleted levels of both ACh and AChE, particularly late in the disease, has supported the design and development of new ChEIs with a preference for BuChE; exemplified by the novel agent, cymserine, whose binding kinetics are characterized for the first time. Specifically, as assessed by the Ellman method, cymserine demonstrated potent concentration-dependent binding with human BuChE. The IC50 was determined as 63 to 100 nM at the substrate concentration range of 25 to 800 microM BuSCh. In addition, the following new binding constants were investigated for human BuChE inhibition by cymserine: T(FPnubeta), K(nubeta), K(Bs), K(MIBA), M(IC50), D(Sc), R(f), (O)K(m), OIC100, K(sl), theta(max) and R(i). These new kinetic constants may open new avenues for the kinetic study of the inhibition of a broad array of other enzymes by a wide variety of inhibitors. In synopsis, cymserine proved to be a potent inhibitor of human BuChE in comparison to its structural analogue, phenserine.  相似文献   

19.
Eight inhibitors of acetylcholinesterase (AChE), tacrine, bis-tacrine, donepezil, rivastigmine, galantamine, heptyl-physostigmine, TAK-147 and metrifonate, were compared with regard to their effects on AChE and butyrylcholinesterase (BuChE) in normal human brain cortex. Additionally, the IC50 values of different molecular forms of AChE (monomeric, G1, and tetrameric, G4) were determined in the cerebral cortex in both normal and Alzheimer's human brains. The most selective AChE inhibitors, in decreasing sequence, were in order: TAK-147, donepezil and galantamine. For BuChE, the most specific was rivastigmine. However, none of these inhibitors was absolutely specific for AChE or BuChE. Among these inhibitors, tacrine, bis-tacrine, TAK-147, metrifonate and galantamine inhibited both the G1 and G4 AChE forms equally well. Interestingly, the AChE molecular forms in Alzheimer samples were more sensitive to some of the inhibitors as compared with the normal samples. Only one inhibitor, rivastigmine, displayed preferential inhibition for the G1 form of AChE. We conclude that a molecular form-specific inhibitor may have therapeutic applications in inhibiting the G1 form, which is relatively unchanged in Alzheimer's brain.  相似文献   

20.
In the search for new treatments for complex disorders such as Alzheimer’s disease the Multi-Target-Directed Ligands represent a very promising approach. The aim of the present study was to identify multifunctional compounds among several series of non-imidazole histamine H3 receptor ligands, derivatives of 1-[2-thiazol-5-yl-(2-aminoethyl)]-4-n-propylpiperazine, 1-[2-thiazol-4-yl-(2-aminoethyl)]-4-n-propylpiperazine and 1-phenoxyalkyl-4-(amino)alkylopiperazine using in vitro and in vivo pharmacological evaluation and computational studies. Performed in vitro assays showed moderate potency of tested compounds against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). Molecular modeling studies have revealed possible interactions between the active compounds and both AChE and BuChE as well as the human H3 histamine receptor. Computational studies showed the high drug-likeness of selected compounds with very good physicochemical profiles. The parallel artificial membrane permeation assay proved outstanding blood–brain barrier penetration in test conditions. The most promising compound, A12, chemically methyl(4-phenylbutyl){2-[2-(4-propylpiperazin-1-yl)-1,3-thiazol-5-yl]ethyl}amine, possesses good balanced multifunctional profile with potency toward studied targets - H3 antagonist activity (pA2 = 8.27), inhibitory activity against both AChE (IC50 = 13.96 μM), and BuChE (IC50 = 14.62 μM). The in vivo pharmacological studies revealed the anti-amnestic properties of compound A12 in the passive avoidance test on mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号