首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Three-dimensional structure of the yeast ribosome.   总被引:4,自引:0,他引:4       下载免费PDF全文
The 80S ribosome from Saccharomyces cerevisiae has been reconstructed from cryo electron micrographs to a resolution of 35 A. It is strikingly similar to the 70S ribosome from Escherichia coli, while displaying the characteristic eukaryotic features familiar from reconstructions of ribosomes from higher eukaryotes. Aside from the elaboration of a number of peripherally located features on the two subunits and greater overall size, the largest difference between the yeast and E.coli ribosomes is in a mass increase on one side of the large (60S) subunit. It thus appears more elliptical than the characteristically globular 50S subunit from E.coli. The interior of the 60S subunit reveals a variable diameter tunnel spanning the subunit between the interface canyon and a site on the lower back of the subunit, presumably the exit site through which the nascent polypeptide chain emerges from the ribosome.  相似文献   

4.
5.
6.
R Brimacombe 《Biochimie》1991,73(7-8):927-936
Over the last two decades essentially three different approaches have been used to study the topography of RNA-protein interactions in the ribosome. These are: (a) the analysis of binding sites for individual ribosomal proteins or groups of proteins on the RNA; (b) the determination of protein footprint sites on the RNA by the application of higher order structure analytical techniques; and (c) the localisation of RNA-protein cross-link sites on the RNA. This article compares and contrasts the types of data that the three different approaches provide, and gives a brief and highly simplified summary of the results that have been obtained for both the 16S and 23S ribosomal RNA from E coli.  相似文献   

7.
At the end of translation in bacteria, ribosome recycling factor (RRF) is used together with elongation factor G to recycle the 30S and 50S ribosomal subunits for the next round of translation. In x-ray crystal structures of RRF with the Escherichia coli 70S ribosome, RRF binds to the large ribosomal subunit in the cleft that contains the peptidyl transferase center. Upon binding of either E. coli or Thermus thermophilus RRF to the E. coli ribosome, the tip of ribosomal RNA helix 69 in the large subunit moves away from the small subunit toward RRF by 8 Å, thereby disrupting a key contact between the small and large ribosomal subunits termed bridge B2a. In the ribosome crystals, the ability of RRF to destabilize bridge B2a is influenced by crystal packing forces. Movement of helix 69 involves an ordered-to-disordered transition upon binding of RRF to the ribosome. The disruption of bridge B2a upon RRF binding to the ribosome seen in the present structures reveals one of the key roles that RRF plays in ribosome recycling, the dissociation of 70S ribosomes into subunits. The structures also reveal contacts between domain II of RRF and protein S12 in the 30S subunit that may also play a role in ribosome recycling.  相似文献   

8.
9.
RNA localization is tightly coordinated with RNA stability and translation control. Bicaudal-D (Bic-D), Egalitarian (Egl), microtubules and their motors are part of a Drosophila transport machinery that localizes mRNAs to specific cellular regions during oogenesis and embryogenesis. We identified the Poly(A)-binding protein (Pabp) as a protein that forms an RNA-dependent complex with Bic-D in embryos and ovaries. pabp also interacts genetically with Bic-D and, similar to Bic-D, pabp is essential in the germline for oocyte growth and accumulation of osk mRNA in the oocyte. In the absence of pabp, reduced stability of osk mRNA and possibly also defects in osk mRNA transport prevent normal oocyte localization of osk mRNA. pabp also interacts genetically with osk and lack of one copy of pabp+ causes osk to become haploinsufficient. Moreover, pointing to a poly(A)-independent role, Pabp binds to A-rich sequences (ARS) in the osk 3′UTR and these turned out to be required in vivo for osk function during early oogenesis. This effect of pabp on osk mRNA is specific for this RNA and other tested mRNAs localizing to the oocyte are less and more indirectly affected by the lack of pabp.  相似文献   

10.
11.
12.
The 5′-untranslated region (5′-UTR) of mRNAs functions as a translation enhancer, promoting translation efficiency. Many in vitro translation systems exhibit a reduced efficiency in protein translation due to decreased translation initiation. The use of a 5′-UTR sequence with high translation efficiency greatly enhances protein production in these systems. In this study, we have developed an in vitro selection system that favors 5′-UTRs with high translation efficiency using a ribosome display technique. A 5′-UTR random library, comprised of 5′-UTRs tagged with a His-tag and Renilla luciferase (R-luc) fusion, were in vitro translated in rabbit reticulocytes. By limiting the translation period, only mRNAs with high translation efficiency were translated. During translation, mRNA, ribosome and translated R-luc with His-tag formed ternary complexes. They were collected with translated His-tag using Ni-particles. Extracted mRNA from ternary complex was amplified using RT-PCR and sequenced. Finally, 5′-UTR with high translation efficiency was obtained from random 5′-UTR library.  相似文献   

13.
14.
Cold denaturation of yeast phosphoglycerate kinase (yPGK) was investigated by a combination of far UV circular dichroism (CD), steady-state and time-resolved fluorescence, and small angle X-ray scattering. It was shown that cold denaturation of yPGK cannot be accounted for by a simple two-state process and that an intermediate state can be stabilized under mild denaturing conditions. Comparison between far UV CD and fluorescence shows that in this state the protein displays a fluorescence signal corresponding mainly to exposed tryptophans, whereas its CD signal is only partially modified. Comparison with spectroscopic data obtained from a mutant missing the last 12 amino-acids (yPGK delta404) suggests that lowering the temperature mainly results in a destabilization of hydrophobic interactions between the two domains. Small angle X-ray scattering measurements give further information about this stabilized intermediate. At 4 degrees C and in the presence of 0.45 M Gdn-HCl, the main species corresponds to a protein as compact as native yPGK, whereas a significant proportion of ellipticity has been lost. Although various techniques have shown the existence of residual structures in denatured proteins, this is one example of a compact denatured state devoid of its main content in alpha helices.  相似文献   

15.
The proper localization of bicoid (bcd) mRNA requires cis-acting signals within its 3' untranslated region (UTR) and trans-acting factors such as Staufen. Dimerization of bcd mRNA through intermolecular base-pairing between two complementary loops of domain III of the 3'UTR was proposed to be important for particle formation in the embryo. The participation in the dimerization process of each domain building the 3'UTR was evaluated by thermodynamic and kinetic analysis of various mutated and truncated RNAs. Although sequence complementarity between the two loops of domain III is required for initiating mRNA dimerization, the initial reversible loop-loop complex is converted rapidly into an almost irreversible complex. This conversion involves parts of RNA outside of domain III that promote initial recognition, and dimerization can be inhibited by sense or antisense oligonucleotides only before conversion has proceeded. Injection of the different bcd RNA variants into living Drosophila embryos shows that all elements that inhibit RNA dimerization in vitro prevent formation of localized particles containing Staufen. Particle formation appeared to be dependent on both mRNA dimerization and other element(s) in domains IV and V. Domain III of bcd mRNA could be substituted by heterologous dimerization motifs of different geometry. The resulting dimers were converted into stable forms, independently of the dimerization module used. Moreover, these chimeric RNAs were competent in forming localized particles and recruiting Staufen. The finding that the dimerization domain of bcd mRNA is interchangeable suggests that dimerization by itself, and not the precise geometry of the intermolecular interactions, is essential for the localization process. This suggests that the stabilizing interactions that are formed during the second step of the dimerization process might represent crucial elements for Staufen recognition and localization.  相似文献   

16.
mRNA helicase activity of the ribosome   总被引:7,自引:0,他引:7  
Takyar S  Hickerson RP  Noller HF 《Cell》2005,120(1):49-58
Most mRNAs contain secondary structure, yet their codons must be in single-stranded form to be translated. Until now, no helicase activity has been identified which could account for the ability of ribosomes to translate through downstream mRNA secondary structure. Using an oligonucleotide displacement assay, together with a stepwise in vitro translation system made up of purified components, we show that ribosomes are able to disrupt downstream helices, including a perfect 27 base pair helix of predicted T(m) = 70 degrees . Using helices of different lengths and registers, the helicase active site can be localized to the middle of the downstream tunnel, between the head and shoulder of the 30S subunit. Mutation of residues in proteins S3 and S4 that line the entry to the tunnel impairs helicase activity. We conclude that the ribosome itself is an mRNA helicase and that proteins S3 and S4 may play a role in its processivity.  相似文献   

17.
A map of how mRNA travels through the ribosome is critical for any detailed understanding of the process of translation. This feat has recently been achieved using X-ray crystallography. The structure reveals, for the first time, details of the interactions between the mRNA and the 30S subunit beyond those at the tRNA binding sites. Elements of both 16S rRNA and ribosomal proteins contribute to mRNA binding. This work also identifies two tunnels that the mRNA passes through as it wraps around the 30S subunit. The mechanisms and mechanics of reading frame selection, translational fidelity, and translocation can now be informed by the structure.  相似文献   

18.
The link between hepatic insulin signaling and apolipoprotein B (apoB) production has important implications in understanding the etiology of metabolic dyslipidemia commonly observed in insulin-resistant states. Recent studies have revealed important translational mechanisms of apoB mRNA involving the 5' untranslated region (5'UTR) and insulin-mediated translational suppression via an insulin-sensitive RNA binding protein. Here, we have investigated the role of the protein kinase C (PKCs) signaling cascade in the regulation of apoB mRNA translation, using a series of chimeric apoB UTR-luciferase constructs, in vitro translation of UTR-luciferase cRNAs, and metabolic labeling of intact HepG2 cells. The PKC activator, phorbol 12-myristate 13-acetate (PMA), increased luciferase expression of constructs containing the apoB 5' UTR whereas treatment with Bis-I, a general PKC inhibitor or Go6976, a more specific PKC alpha/beta inhibitor, decreased expression, under both basal and insulin-treated conditions. These effects were confirmed to be translational in nature based on in vitro translation studies of T7 apoB UTR-luciferase constructs transcribed and translated in vitro in the presence of HepG2 cytosol treated with insulin or signaling modulators. Mobility shift experiments using cytosol treated with either PKC inhibitor (Bis-I) or activator (PMA) showed parallel changes between translation of apoB 5'UTR-luciferase constructs and the binding of a protein(s) complex migrating around 110 kDa to the apoB 5' UTR. ApoB mRNA levels were unaltered under these conditions based on real-time PCR analysis. Bis-I and Go6976 were both able to significantly decrease newly synthesized apoB100 protein in the presence or absence of insulin. Overall, the data suggests that PKC activation may induce increased mRNA translation and synthesis of apoB100 protein through a mechanism involving the interaction of trans-acting factors with the apoB 5'UTR. We postulate potential links between PKC activation as seen in insulin-resistant/diabetic states, enhanced translation of apoB mRNA, and hepatic VLDL-apoB overproduction.  相似文献   

19.
Eukaryotic gene expression requires the export of mRNA from the nucleus to the cytoplasm. The DEAD box protein Dbp5p is an essential export factor conserved from yeast to man. A fraction of Dbp5p forms a complex with nucleoporins of the cytoplasmic filaments of the nuclear pore complex. Gfd1p was identified originally as a multicopy suppressor of the rat8-2 ts allele of DBP5. Here we reported that Dbp5p and Gfd1p interact with Zds1p, a protein previously identified as a multicopy suppressor in several yeast genetic screens. By using the two-hybrid system, we showed that Zds1p interacts in vivo with both Gfd1p and Dbp5p. In vitro binding experiments revealed that Gfd1p and Dbp5p bind directly to the C-terminal part of Zds1p. In addition, ZDS1 interacted genetically with mutant alleles of genes encoding key factors in mRNA export, including DBP5 and MEX67. Furthermore, deletion of ZDS1 or of both ZDS1 and the closely related ZDS2 exacerbated the poly(A)+ export defects shown by dbp5-2 and mex67-5 mutants. We proposed that Zds1p associates with the complex formed by Dbp5p, Gfd1p, and nucleoporins at the cytosolic fibrils of the nuclear pore complex and is required for optimal mRNA export.  相似文献   

20.
Preferential translation of Drosophila heat shock protein 70 (Hsp70) mRNA requires only the 5'-untranslated region (5'-UTR). The sequence of this region suggests that it has relatively little secondary structure, which may facilitate efficient protein synthesis initiation. To determine whether minimal 5'-UTR secondary structure is required for preferential translation during heat shock, the effect of introducing stem-loops into the Hsp70 mRNA 5'-UTR was measured. Stem-loops of -11 kcal/mol abolished translation during heat shock, but did not reduce translation in non-heat shocked cells. A -22 kcal/mol stem-loop was required to comparably inhibit translation during growth at normal temperatures. To investigate whether specific sequence elements are also required for efficient preferential translation, deletion and mutation analyses were conducted in a truncated Hsp70 5'-UTR containing only the cap-proximal and AUG-proximal segments. Linker-scanner mutations in the cap-proximal segment (+1 to +37) did not impair translation. Re-ordering the segments reduced mRNA translational efficiency by 50%. Deleting the AUG-proximal segment severely inhibited translation. A 5-extension of the full-length leader specifically impaired heat shock translation. These results indicate that heat shock reduces the capacity to unwind 5-UTR secondary structure, allowing only mRNAs with minimal 5'-UTR secondary structure to be efficiently translated. A function for specific sequences is also suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号