首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 195 毫秒
1.
We show that RecN protein is recruited to a defined DNA double strand break (DSB) in Bacillus subtilis cells at an early time point during repair. Because RecO and RecF are successively recruited to DSBs, it is now clear that dynamic DSB repair centers (RCs) exist in prokaryotes. RecA protein was also recruited to RCs and formed highly dynamic filamentous structures, which we term threads, across the nucleoids. Formation of RecA threads commenced approximately 30 min after the induction of DSBs, after RecN recruitment to RCs, and disassembled after 2 h. Time-lapse microscopy showed that the threads rapidly changed in length, shape, and orientation within minutes and can extend at 1.02 microm/min. The formation of RecA threads was abolished in recJ addAB mutant cells but not in each of the single mutants, suggesting that RecA filaments can be initiated via two pathways. Contrary to proteins forming RCs, DNA polymerase I did not form foci but was present throughout the nucleoids (even after induction of DSBs or after UV irradiation), suggesting that it continuously scans the chromosome for DNA lesions.  相似文献   

2.
Bacillus subtilis cells respond to double strand breaks (DSBs) with an ordered recruitment of repair proteins to the site lesion, being RecN one of the first responders. In B. subtilis, one of the responses to DSBs is to increase RecN expression rather than modifying its turnover rate. End-processing activities and the RecA protein itself contribute to increase RecN levels after DNA DSBs. RecO is required for RecA filament formation and full SOS induction, but its absence did not significantly affect RecN expression. Neither the absence of LexA nor the phosphorylation state of RecA or SsbA significantly affect RecN expression levels. These findings identify two major mechanisms (SOS and DSB response) used to respond to DSBs, with LexA required for one of them (SOS response). The DSB response, which requires end-processing and RecA or short RecO-independent RecA filaments, highlights the importance of guarding genome stability by modulating the DNA damage responses.  相似文献   

3.
Protein degradation in bacteria plays a dynamic and critical role in the cellular response to environmental stimuli such as heat shock and DNA damage and in removing damaged proteins or protein aggregates. Escherichia coli recN is a member of the structural maintenance of chromosomes family and is required for DNA double strand break (DSB) repair. This study shows that RecN protein has a short half-life and its degradation is dependent on the cytoplasmic protease ClpXP and a degradation signal at the C terminus of RecN. In cells with DNA DSBs, green fluorescent protein-RecN localized in discrete foci on nucleoids and formed visible aggregates in the cytoplasm, both of which disappeared rapidly in wild-type cells when DSBs were repaired. In contrast, in DeltaclpX cells, RecN aggregates persisted in the cytoplasm after release from DNA damage. Furthermore, analysis of cells experiencing chronic DNA damage revealed that proteolytic removal of RecN aggregates by ClpXP was important for cell viability. These data demonstrate that ClpXP is a critical factor in the cellular clearance of cytoplasmic RecN aggregates from the cell and therefore plays an important role in DNA damage tolerance.  相似文献   

4.
Bacillus subtilis and most Gram positive bacteria possess four SMC like proteins: SMC, SbcC, RecN and the product of the yhaN gene, termed SbcE. SbcE is most similar to SbcC but contains a unique central domain. We show that SbcE plays a role during transformation in competent cells and in DNA double-strand break (DSB) repair. The phenotypes were strongly exacerbated by the additional deletion of recN or of sbcC, suggesting that all three proteins act upstream of RecA and provide distinct avenues for presynapsis. SbcE accumulated at the cell poles in competent cells, and localized as a discrete focus on the nucleoids in 10% of growing cells. This number moderately increased after treatment with DNA damaging agents and in the absence of RecN or of SbcC. Damage-induced foci of SbcE arose early after induction of DNA damage and rarely colocalized with the replication machinery. Our work shows that SMC-like proteins in B. subtilis play roles at different subcellular sites during DNA repair. SbcC operates at breaks occurring at the replication machinery, whereas RecN and SbcE function mainly, but not exclusively, at DSBs arising elsewhere on the chromosome. In agreement with this idea, we found that RecN-YFP damage-induced assemblies also arise in the absence of ongoing replication.  相似文献   

5.
Escherichia coli RecN is an SMC (structural maintenance of chromosomes) family protein that is required for DNA double-strand break (DSB) repair. Previous studies show that GFP-RecN forms nucleoid-associated foci in response to DNA damage, but the mechanism by which RecN is recruited to the nucleoid is unknown. Here, we show that the assembly of GFP-RecN foci on the nucleoid in response to DNA damage involves a functional interaction between RecN and RecA. A novel RecA allele identified in this work, recAQ300R, is proficient in SOS induction and repair of UV-induced DNA damage, but is deficient in repair of mitomycin C (MMC)-induced DNA damage. Cells carrying recAQ300R fail to recruit RecN to DSBs and accumulate fragmented chromosomes after exposure to MMC. The ATPase-deficient RecNK35A binds and forms foci at MMC-induced DSBs, but is not released from the MMC-induced DNA lesions, resulting in a defect in homologous recombination-dependent DSB repair. These data suggest that RecN plays a crucial role in homologous recombination-dependent DSB repair and that it is required upstream of RecA-mediated strand exchange.  相似文献   

6.
DNA replication and repair are two fundamental processes required in life proliferation and cellular defense and some common proteins are involved in both processes. The filamentous cyanobacterium Anabaena sp. strain PCC 7120 is capable of forming heterocysts for N2 fixation in the absence of a combined-nitrogen source. This developmental process is intimately linked to cell cycle control. In this study, we investigated the localization of the DNA double-strand break repair protein RecN during key cellular events, such as chromosome damaging, cell division, and heterocyst differentiation. Treatment by a drug causing DNA double-strand breaks (DSBs) induced reorganization of the RecN focus preferentially towards the mid-cell position. RecN-GFP was absent in most mature heterocysts. Furthermore, our results showed that HetR, a central player in heterocyst development, was involved in the proper positioning and distribution of RecN-GFP. These results showed the dynamics of RecN in DSB repair and suggested a differential regulation of DNA DSB repair in vegetative cell and heterocysts. The absence of RecN in mature heterocysts is compatible with the terminal nature of these cells.  相似文献   

7.
The recognition and processing of double-strand breaks (DSBs) to a 3' single-stranded DNA (ssDNA) overhang structure in Bacillus subtilis is poorly understood. Mutations in addA and addB or null mutations in recJ (DeltarecJ), recQ (DeltarecQ), or recS (DeltarecS) genes, when present in otherwise-Rec+ cells, render cells moderately sensitive to the killing action of different DNA-damaging agents. Inactivation of a RecQ-like helicase (DeltarecQ or DeltarecS) in addAB cells showed an additive effect; however, when DeltarecJ was combined with addAB, a strong synergistic effect was observed with a survival rate similar to that of DeltarecA cells. RecF was nonepistatic with RecJ or AddAB. After induction of DSBs, RecN-yellow fluorescent protein (YFP) foci were formed in addAB DeltarecJ cells. AddAB and RecJ were required for the formation of a single RecN focus, because in their absence multiple RecN-YFP foci accumulated within the cells. Green fluorescent protein-RecA failed to form filamentous structures (termed threads) in addAB DeltarecJ cells. We propose that RecN is one of the first recombination proteins detected as a discrete focus in live cells in response to DSBs and that either AddAB or RecQ(S)-RecJ are required for the generation of a duplex with a 3'-ssDNA tail needed for filament formation of RecA.  相似文献   

8.
The sensitivity of a panel of DNA repair-defective bacterial strains to BLM was investigated. Escherichia coli recA cells were far more sensitive than were uvrA, dam-3, and mutM mutY strains, underscoring the importance of RecA to survival. Strains recBCD and recN, which lack proteins required for double strand break (DSB) repair, were highly sensitive to BLM, while recF cells were not. The requirement for DSB-specific enzymes supports the hypothesis that DSBs are the primary cause of bleomycin cytotoxicity. The acute sensitivity of recN cells was comparable to that of recA, implying a central role for the RecN protein in BLM lesion repair. The Holliday junction processing enzymes RecG and RuvC were both required for BLM survival. The recG ruvC double mutant was no more sensitive than either mutation alone, suggesting that both enzymes participate in the same pathway. Surprisingly, ruvAB cells were no more sensitive than wildtype, implying that RuvC is able to perform its role without RuvAB. This observation contrasts with current models of recombination in which RuvA, B, and C function as a single complex. The most straightforward explanation of these results is that DSB repair involves a structure that serves as a good substrate for RecG, and not RuvAB.  相似文献   

9.
Cycling cells must respond to DNA double-strand breaks (DSBs) to avoid genome instability. Missegregation of chromosomes with DSBs during mitosis results in micronuclei, aberrant structures linked to disease. How cells respond to DSBs during mitosis is incompletely understood. We previously showed that Drosophila melanogaster papillar cells lack DSB checkpoints (as observed in many cancer cells). Here, we show that papillar cells still recruit early acting repair machinery (Mre11 and RPA3) and the Fanconi anemia (FA) protein Fancd2 to DSBs. These proteins persist as foci on DSBs as cells enter mitosis. Repair foci are resolved in a stepwise manner during mitosis. DSB repair kinetics depends on both monoubiquitination of Fancd2 and the alternative end-joining protein DNA polymerase θ. Disruption of either or both of these factors causes micronuclei after DNA damage, which disrupts intestinal organogenesis. This study reveals a mechanism for how cells with inactive DSB checkpoints can respond to DNA damage that persists into mitosis.  相似文献   

10.
Bacillus subtilis RecA is important for spore resistance to DNA damage, even though spores contain a single non-replicating genome. We report that inactivation of RecA or its accessory factors, RecF, RecO, RecR and RecX, drastically reduce survival of mature dormant spores to ultrahigh vacuum desiccation and ionizing radiation that induce single strand (ss) DNA nicks and double-strand breaks (DSBs). The presence of non-cleavable LexA renders spores less sensitive to DSBs, and spores impaired in DSB recognition or end-processing show sensitivities to X-rays similar to wild-type. In vitro RecA cannot compete with SsbA for nucleation onto ssDNA in the presence of ATP. RecO is sufficient, at least in vitro, to overcome SsbA inhibition and stimulate RecA polymerization on SsbA-coated ssDNA. In the presence of SsbA, RecA slightly affects DNA replication in vitro, but addition of RecO facilitates RecA-mediated inhibition of DNA synthesis. We propose that repairing of the DNA lesions generates a replication stress to germinating spores, and the RecA·ssDNA filament might act by preventing potentially dangerous forms of DNA repair occurring during replication. RecA might stabilize a stalled fork or prevent or promote dissolution of reversed forks rather than its cleavage that should require end-processing.  相似文献   

11.
All organisms rely on integrated networks to repair DNA double-strand breaks (DSBs) in order to preserve the integrity of the genetic information, to re-establish replication, and to ensure proper chromosomal segregation. Genetic, cytological, biochemical and structural approaches have been used to analyze how Bacillus subtilis senses DNA damage and responds to DSBs. RecN, which is among the first responders to DNA DSBs, promotes the ordered recruitment of repair proteins to the site of a lesion. Cells have evolved different mechanisms for efficient end processing to create a 3′-tailed duplex DNA, the substrate for RecA binding, in the repair of one- and two-ended DSBs. Strand continuity is re-established via homologous recombination (HR), utilizing an intact homologous DNA molecule as a template. In the absence of transient diploidy or of HR, however, two-ended DSBs can be directly re-ligated via error-prone non-homologous end-joining. Here we review recent findings that shed light on the early stages of DSB repair in Firmicutes.  相似文献   

12.
Interstrand cross-links (ICLs) are an extremely toxic class of DNA damage incurred during normal metabolism or cancer chemotherapy. ICLs covalently tether both strands of duplex DNA, preventing the strand unwinding that is essential for polymerase access. The mechanism of ICL repair in mammalian cells is poorly understood. However, genetic data implicate the Ercc1-Xpf endonuclease and proteins required for homologous recombination-mediated double-strand break (DSB) repair. To examine the role of Ercc1-Xpf in ICL repair, we monitored the phosphorylation of histone variant H2AX (gamma-H2AX). The phosphoprotein accumulates at DSBs, forming foci that can be detected by immunostaining. Treatment of wild-type cells with mitomycin C (MMC) induced gamma-H2AX foci and increased the amount of DSBs detected by pulsed-field gel electrophoresis. Surprisingly, gamma-H2AX foci were also induced in Ercc1(-/-) cells by MMC treatment. Thus, DSBs occur after cross-link damage via an Ercc1-independent mechanism. Instead, ICL-induced DSB formation required cell cycle progression into S phase, suggesting that DSBs are an intermediate of ICL repair that form during DNA replication. In Ercc1(-/-) cells, MMC-induced gamma-H2AX foci persisted at least 48 h longer than in wild-type cells, demonstrating that Ercc1 is required for the resolution of cross-link-induced DSBs. MMC triggered sister chromatid exchanges in wild-type cells but chromatid fusions in Ercc1(-/-) and Xpf mutant cells, indicating that in their absence, repair of DSBs is prevented. Collectively, these data support a role for Ercc1-Xpf in processing ICL-induced DSBs so that these cytotoxic intermediates can be repaired by homologous recombination.  相似文献   

13.
In models of Escherichia coli recombination and DNA repair, the RuvABC complex directs the branch migration and resolution of Holliday junction DNA. To probe the validity of the E. coli paradigm, we examined the impact of mutations in DeltaruvAB and DeltarecU (a ruvC functional analog) on DNA repair. Under standard transformation conditions we failed to construct DeltaruvAB DeltarecG, DeltarecU DeltaruvAB, DeltarecU DeltarecG, or DeltarecU DeltarecJ strains. However, DeltaruvAB could be combined with addAB (recBCD), recF, recH, DeltarecS, DeltarecQ, and DeltarecJ mutations. The DeltaruvAB and DeltarecU mutations rendered cells extremely sensitive to DNA-damaging agents, although less sensitive than a DeltarecA strain. When damaged cells were analyzed, we found that RecU was recruited to defined double-stranded DNA breaks (DSBs) and colocalized with RecN. RecU localized to these centers at a later time point during DSB repair, and formation was dependent on RuvAB. In addition, expression of RecU in an E. coli ruvC mutant restored full resistance to UV light only when the ruvAB genes were present. The results demonstrate that, as with E. coli RuvABC, RuvAB targets RecU to recombination intermediates and that all three proteins are required for repair of DSBs arising from lesions in chromosomal DNA.  相似文献   

14.
The regions of single-stranded (ss) DNA that result from DNA damage are immediately coated by the ssDNA-binding protein (SSB). RecF pathway proteins facilitate the displacement of SSB from ssDNA, allowing the RecA protein to form protein filaments on the ssDNA region, which facilitates the process of recombinational DNA repair. In this study, we examined the mechanism of SSB displacement from ssDNA using purified Thermus thermophilus RecF pathway proteins. To date, RecO and RecR are thought to act as the RecOR complex. However, our results indicate that RecO and RecR have distinct functions. We found that RecR binds both RecF and RecO, and that RecO binds RecR, SSB and ssDNA. The electron microscopic studies indicated that SSB is displaced from ssDNA by RecO. In addition, pull-down assays indicated that the displaced SSB still remains indirectly attached to ssDNA through its interaction with RecO in the RecO-ssDNA complex. In the presence of both SSB and RecO, the ssDNA-dependent ATPase activity of RecA was inhibited, but was restored by the addition of RecR. Interestingly, the interaction of RecR with RecO affected the ssDNA-binding properties of RecO. These results suggest a model of SSB displacement from the ssDNA by RecF pathway proteins.  相似文献   

15.
Bacillus subtilis pnpA gene product, polynucleotide phosphorylase (PNPase), is involved in double-strand break (DSB) repair via homologous recombination (HR) or non-homologous end-joining (NHEJ). RecN is among the first responders to localize at the DNA DSBs, with PNPase facilitating the formation of a discrete RecN focus per nucleoid. PNPase, which co-purifies with RecA and RecN, was able to degrade single-stranded (ss) DNA with a 3' → 5' polarity in the presence of Mn(2+) and low inorganic phosphate (Pi) concentration, or to extend a 3'-OH end in the presence dNDP · Mn(2+). Both PNPase activities were observed in evolutionarily distant bacteria (B. subtilis and Escherichia coli), suggesting conserved functions. The activity of PNPase was directed toward ssDNA degradation or polymerization by manipulating the Pi/dNDPs concentrations or the availability of RecA or RecN. In its dATP-bound form, RecN stimulates PNPase-mediated polymerization. ssDNA phosphorolysis catalyzed by PNPase is stimulated by RecA, but inhibited by SsbA. Our findings suggest that (i) the PNPase degradative and polymerizing activities might play a critical role in the transition from DSB sensing to end resection via HR and (ii) by blunting a 3'-tailed duplex DNA, in the absence of HR, B. subtilis PNPase might also contribute to repair via NHEJ.  相似文献   

16.
J M Bork  M M Cox  R B Inman 《The EMBO journal》2001,20(24):7313-7322
The Escherichia coli RecF, RecO and RecR pro teins have previously been implicated in bacterial recombinational DNA repair at DNA gaps. The RecOR-facilitated binding of RecA protein to single-stranded DNA (ssDNA) that is bound by single-stranded DNA-binding protein (SSB) is much faster if the ssDNA is linear, suggesting that a DNA end (rather than a gap) facilitates binding. In addition, the RecOR complex facilitates RecA protein-mediated D-loop formation at the 5' ends of linear ssDNAs. RecR protein remains associated with the RecA filament and its continued presence is required to prevent filament disassembly. RecF protein competes with RecO protein for RecR protein association and its addition destabilizes RecAOR filaments. An enhanced function of the RecO and RecR proteins can thus be seen in vitro at the 5' ends of linear ssDNA that is not as evident in DNA gaps. This function is countered by the RecF/RecO competition for association with the RecR protein.  相似文献   

17.
The RecR protein forms complexes with RecF or RecO that direct the specific loading of RecA onto gapped DNA. However, the binding sites of RecF and RecO on RecR have yet to be identified. In this study, a Thermus thermophilus RecR dimer model was constructed by NMR analysis and homology modeling. NMR titration analysis suggested that the hairpin region of the helix-hairpin-helix motif in the cavity of the RecR dimer is a binding site for double-stranded DNA (dsDNA) and that the acidic cluster region of the Toprim domain is a RecO binding site. Mutations of Glu-84, Asp-88, and Glu-144 residues comprising that acidic cluster were generated. The E144A and E84A mutations decreased the binding affinity for RecO, but the D88A did not. Interestingly, the binding ability to RecF was abolished by E144A, suggesting that the region surrounding the RecR Glu-144 residue could be a binding site not only for RecO but also for RecF. Furthermore, RecR and RecF formed a 4:2 heterohexamer in solution that was unaffected by adding RecO, indicating a preference by RecR for RecF over RecO. The RecFR complex is considered to be involved in the recognition of the dsDNA-ssDNA junction, whereas RecO binds single-stranded DNA (ssDNA) and ssDNA-binding protein. Thus, the RecR Toprim domain may contribute to the RecO interaction with RecFR complexes at the dsDNA-ssDNA junction site during recombinational DNA repair mediated by the RecFOR.  相似文献   

18.
The recO gene product is required for DNA repair and some types of homologous recombination in wild-type Escherichia coli cells. RecO protein has been previously purified and shown to bind to single- and double-stranded DNA and to promote the renaturation of complementary single-stranded DNA molecules. In this study, purified RecO protein was shown to catalyze the assimilation of single-stranded DNA into homologous superhelical double-stranded DNA, an activity also associated with RecA protein. The RecO protein-promoted strand assimilation reaction requires Mg2+ and is ATP independent. Because of the biochemical similarities between RecO and RecA proteins, the ability of RecO protein to substitute for RecA protein in DNA repair in vivo was also assessed in this study. The results show that overexpression of RecO protein partially suppressed the UV repair deficiency of a recA null mutant and support the hypothesis that RecO and RecA proteins are functionally similar with respect to strand assimilation and the ability to enhance UV survival. These results suggest that RecO and RecA proteins may have common functional properties.  相似文献   

19.
Goodarzi AA  Jeggo P  Lobrich M 《DNA Repair》2010,9(12):1273-1282
DNA non-homologous end-joining (NHEJ) and homologous recombination (HR) represent the major DNA double strand break (DSB) pathways in mammalian cells, whilst ataxia telangiectasia mutated (ATM) lies at the core of the DSB signalling response. ATM signalling plays a major role in modifying chromatin structure in the vicinity of the DSB and increasing evidence suggests that this function influences the DSB rejoining process. DSBs have long been known to be repaired with two (or more) component kinetics. The majority (~85%) of DSBs are repaired with fast kinetics in a predominantly ATM-independent manner. In contrast, ~15% of radiation-induced DSBs are repaired with markedly slower kinetics via a process that requires ATM and those mediator proteins, such as MDC1 or 53BP1, that accumulate at ionising radiation induced foci (IRIF). DSBs repaired with slow kinetics predominantly localise to the periphery of genomic heterochromatin (HC). Indeed, there is mounting evidence that chromatin complexity and not damage complexity confers slow DSB repair kinetics. ATM's role in HC-DSB repair involves the direct phosphorylation of KAP-1, a key HC formation factor. KAP-1 phosphorylation (pKAP-1) arises in both a pan-nuclear and a focal manner after radiation and ATM-dependent pKAP-1 is essential for DSB repair within HC regions. Mediator proteins such as 53BP1, which are also essential for HC-DSB repair, are expendable for pan-nuclear pKAP-1 whilst being essential for pKAP-1 formation at IRIF. Data suggests that the essential function of the mediator proteins is to promote the retention of activated ATM at DSBs, concentrating the phosphorylation of KAP-1 at HC DSBs. DSBs arising in G2 phase are also repaired with fast and slow kinetics but, in contrast to G0/G1 where they all DSBs are repaired by NHEJ, the slow component of DSB repair in G2 phase represents an HR process involving the Artemis endonuclease. Results suggest that whilst NHEJ repairs the majority of DSBs in G2 phase, Artemis-dependent HR uniquely repairs HC DSBs. Collectively, these recent studies highlight not only how chromatin complexity influences the factors required for DSB repair but also the pathway choice.  相似文献   

20.
To investigate the repair of clustered lesions within the DNA/chromatin, the focus formation and persistence of foci of the phosphorylated histone protein H2AX and the repair protein MRE11 were studied in normal cells and in cells lacking DNA-PKcs (M059J) or ATM (GM2052D) after irradiation with high-LET nitrogen ions or low-LET photons. There was a rapid formation of MRE11 and gamma-H2AX foci, and 0.5 h after high-LET irradiation, the number of foci in normal cells correlated well with the number of particle hits per cell nucleus. After 8 h of repair, there were significantly more gamma-H2AX foci than MRE11 foci remaining in the normal cells, independent of radiation quality. The difficulty in repairing clustered breaks was detected as slower rejoining of DSBs (measured by DNA fragmentation analysis), as quantification of the amount of gamma-H2AX over time, and as a larger fraction of repair foci remaining after 24 h in cells irradiated with high- LET ions. These data indicate that clustered lesions are repaired by a pathway involving the same proteins that repair sparsely distributed breaks. Further, for both low- and high- LET radiation, no reduction of the initial number of gamma-H2AX and MRE11 foci was detected in M059J cells up to 21 h after irradiation, which was in accordance with a complete absence of DSB rejoining in these cells. In the GM2052D cells there was also a higher level of foci remaining after 21 h; however, this was not accompanied by unrejoined DSBs, indicating that these foci not only represent DSBs but also may be a sign of persistent problems even when breaks are rejoined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号