首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Protein Data Bank is a computer-based archival file for macromolecular structures. The Bank stores in a uniform format atomic co-ordinates and partial bond connectivities, as derived from crystallographic studies. Text included in each data entry gives pertinent information for the structure at hand (e.g. species from which the molecule has been obtained, resolution of diffraction data, literature citations and specifications of secondary structure). In addition to atomic co-ordinates and connectivities, the Protein Data Bank stores structure factors and phases, although these latter data are not placed in any uniform format. Input of data to the Bank and general maintenance functions are carried out at Brookhaven National Laboratory. All data stored in the Bank are available on magnetic tape for public distribution, from Brookhaven (to laboratories in the Americas), Tokyo (Japan), and Cambridge (Europe and worldwide). A master file is maintained at Brookhaven and duplicate copies are stored in Cambridge and Tokyo. In the future, it is hoped to expand the scope of the Protein Data Bank to make available co-ordinates for standard structural types (e.g. α-helix, RNA double-stranded helix) and representative computer programs of utility in the study and interpretation of macromolecular structures.  相似文献   

2.
The rapidly increasing amount of information on three-dimensional (3D) structures of biological macro-molecules has still an insufficient impact on genome analysis, functional genomics and proteomics as well as on many other fields in biomedicine including disease-related research. There are, however, attempts to make structural data more easily accessible to the bench biologist. As members of the world-wide Protein Data Bank (wwPDB), the RCSB Protein Data Bank (PDB), the Protein Data Bank Japan and the Macromolecular Structure Database are the primary information resources for 3D structures of proteins, nucleic acids, carbohydrates and complexes thereof. In addition, a number of secondary resources have been set up that also provide information on all currently known structures in a relatively comprehensive manner and not focusing on specific features only. They include PDBsum, the OCA browser-database for protein structure/function, the Molecular Modeling Database and the Jena Library of Biological Macromolecules--JenaLib. Both the primary and secondary resources often merge the information in the PDB files with data from other resources and offer additional analysis tools thereby adding value to the original PDB data. Here, we briefly describe these resources from a user's point of view and from a comparative perspective. It is our aim to guide researchers outside the structure biology field in getting the most out of the 3D structure resources.  相似文献   

3.
Most of the proteins in a cell assemble into complexes to carry out their function. It is therefore crucial to understand the physicochemical properties as well as the evolution of interactions between proteins. The Protein Data Bank represents an important source of information for such studies, because more than half of the structures are homo- or heteromeric protein complexes. Here we propose the first hierarchical classification of whole protein complexes of known 3-D structure, based on representing their fundamental structural features as a graph. This classification provides the first overview of all the complexes in the Protein Data Bank and allows nonredundant sets to be derived at different levels of detail. This reveals that between one-half and two-thirds of known structures are multimeric, depending on the level of redundancy accepted. We also analyse the structures in terms of the topological arrangement of their subunits and find that they form a small number of arrangements compared with all theoretically possible ones. This is because most complexes contain four subunits or less, and the large majority are homomeric. In addition, there is a strong tendency for symmetry in complexes, even for heteromeric complexes. Finally, through comparison of Biological Units in the Protein Data Bank with the Protein Quaternary Structure database, we identified many possible errors in quaternary structure assignments. Our classification, available as a database and Web server at http://www.3Dcomplex.org, will be a starting point for future work aimed at understanding the structure and evolution of protein complexes.  相似文献   

4.
The Protein Circular Dichroism Data Bank (PCDDB) is a newly released resource for structural biology. It is a web-accessible (http://pcddb.cryst.bbk.ac.uk) data bank for circular dichroism (CD) and synchrotron radiation circular dichroism (SRCD) spectra and their associated experimental and secondary metadata, with links to protein sequence and structure data banks. It is designed to provide a public repository for CD spectroscopic data on macromolecules, to parallel the Protein Data Bank (PDB) for crystallographic, electron microscopic, and nuclear magnetic resonance spectroscopic data. Similarly to the PDB, it includes validation checking procedures to ensure good practice and the integrity of the deposited data. This paper reports on the first public release of the PCDDB, which provides access to spectral data that comprise standard reference datasets.  相似文献   

5.
Prof. Haruki Nakamura, who is the former head of Protein Data Bank Japan (PDBj) and an expert in computational biology, retired from Osaka University at the end of March 2018. He founded PDBj at the Institute for Protein Research, together with other faculty members, researchers, engineers, and annotators in 2000, and subsequently established the worldwide Protein Data Bank (wwPDB) in 2003 to manage the core archive of the Protein Data Bank (PDB), collaborating with RCSB-PDB in the USA and PDBe in Europe. As the former head of PDBj and also an expert in structural bioinformatics, he has grown PDBj to become a well-known data center within the structural biology community and developed several related databases, tools and integrated with new technologies, such as the semantic web, as primary services offered by PDBj.  相似文献   

6.
Oligomeric proteins are more abundant in nature than monomeric proteins, and involved in all biological processes. In the absence of an experimental structure, their subunits can be modeled from their sequence like monomeric proteins, but reliable procedures to build the oligomeric assembly are scarce. Template‐based methods, which start from known protein structures, are commonly applied to model subunits. We present a method to model homodimers that relies on a structural alignment of the subunits, and test it on a set of 511 target structures recently released by the Protein Data Bank, taking as templates the earlier released structures of 3108 homodimeric proteins (H‐set), and 2691 monomeric proteins that form dimer‐like assemblies in crystals (M‐set). The structural alignment identifies a H‐set template for 97% of the targets, and in half of the cases, it yields a correct model of the dimer geometry and residue–residue contacts in the target. It also identifies a M‐set template for most of the targets, and some of the crystal dimers are very similar to the target homodimers. The procedure efficiently detects homology at low levels of sequence identities, and points to erroneous quaternary structures in the Protein Data Bank. The high coverage of the target set suggests that the content of the Protein Data Bank already approaches the structural diversity of protein assemblies in nature, and that template‐based methods should become the choice method for modeling oligomeric as well as monomeric proteins.  相似文献   

7.
Whitmore L  Janes RW  Wallace BA 《Chirality》2006,18(6):426-429
The Protein Circular Dichroism Data Bank (PCDDB) is a new deposition data bank for validated circular dichroism spectra of biomacromolecules. Its aim is to be a resource for the structural biology and bioinformatics communities, providing open access and archiving facilities for circular dichroism and synchrotron radiation circular dichroism spectra. It is named in parallel with the Protein Data Bank (PDB), a long-existing valuable reference data bank for protein crystal and NMR structures. In this article, we discuss the design of the data bank structure and the deposition website located at http://pcddb.cryst.bbk.ac.uk. Our aim is to produce a flexible and comprehensive archive, which enables user-friendly spectral deposition and searching. In the case of a protein whose crystal structure and sequence are known, the PCDDB entry will be linked to the appropriate PDB and sequence data bank files, respectively. It is anticipated that the PCDDB will provide a readily accessible biophysical catalogue of information on folded proteins that may be of value in structural genomics programs, for quality control and archiving in industrial and academic labs, as a resource for programs developing spectroscopic structural analysis methods, and in bioinformatics studies.  相似文献   

8.
We present an improved version of RosettaHoles, a methodology for quantitative and visual characterization of protein core packing. RosettaHoles2 features a packing measure more rapidly computable, accurate and physically transparent, as well as a new validation score intended for structures submitted to the Protein Data Bank. The differential packing measure is parameterized to maximize the gap between computationally generated and experimentally determined X‐ray structures, and can be used in refinement of protein structure models. The parameters of the model provide insight into components missing in current force fields, and the validation score gives an upper bound on the X‐ray resolution of Protein Data Bank structures; a crystal structure should have a validation score as good as or better than its resolution.  相似文献   

9.

Background  

The interacting residues of protein and nucleic acid sequences are close to each other – they are co-located. Structure databases (like Protein Data Bank, PDB and Nucleic Acid Data Bank, NDB) contain all in0066ormation about these co-locations; however it is not an easy task to penetrate this complex information. We developed a JAVA tool, called SeqX for this purpose.  相似文献   

10.
Three-dimensional electron microscopy (3DEM) has made significant contributions to structural biology. To accomplish this feat, many image-processing software packages were developed by various laboratories. The independent development of methods naturally implied the adoption of dissimilar conventions-penalizing users who want to take advantage of the wealth of algorithms from different packages. In addition, a public repository of 3DEM research results, the EM Data Bank, is now established. In an era where information exchange is important, standardizing conventions is a necessity. The 3DEM field requires a consistent set of conventions. We propose a set of common conventions named the "3DEM Image Conventions." They are designed as a standardized approach to image interpretation and presentation. In this regard, the conventions serve as a first step on which to build data-exchange solutions among existing software packages and as a vehicle for homogenous data representation in data archives, such as the EM Data Bank.  相似文献   

11.
The targets of the Structural GenomiX (SGX) bacterial genomics project were proteins conserved in multiple prokaryotic organisms with no obvious sequence homolog in the Protein Data Bank of known structures. The outcome of this work was 80 structures, covering 60 unique sequences and 49 different genes. Experimental phase determination from proteins incorporating Se-Met was carried out for 45 structures with most of the remainder solved by molecular replacement using members of the experimentally phased set as search models. An automated tool was developed to deposit these structures in the Protein Data Bank, along with the associated X-ray diffraction data (including refined experimental phases) and experimentally confirmed sequences. BLAST comparisons of the SGX structures with structures that had appeared in the Protein Data Bank over the intervening 3.5 years since the SGX target list had been compiled identified homologs for 49 of the 60 unique sequences represented by the SGX structures. This result indicates that, for bacterial structures that are relatively easy to express, purify, and crystallize, the structural coverage of gene space is proceeding rapidly. More distant sequence-structure relationships between the SGX and PDB structures were investigated using PDB-BLAST and Combinatorial Extension (CE). Only one structure, SufD, has a truly unique topology compared to all folds in the PDB.  相似文献   

12.
13.
The HIV structural database (HIVSDB) is a comprehensive collection of the structures of HIV protease, both of unliganded enzyme and of its inhibitor complexes. It contains abstracts and crystallographic data such as inhibitor and protein coordinates for 248 data sets, of which only 141 are from the Protein Data Bank (PDB). Efficient annotation, indexing, and querying of the inhibitor data is crucial for their effective use for technological and industrial applications. The application of IUPAC International Chemical Identifier (InChI) to index, curate, and query inhibitor structures HIVSDB is described.  相似文献   

14.

Background  

The majority of relations between proteins can be represented as a conventional sequential alignment. Nevertheless, unusual non-sequential alignments with different connectivity of the aligned fragments in compared proteins have been reported by many researchers. It is interesting to understand those non-sequential alignments; are they unique, sporadic cases or they occur frequently; do they belong to a few specific folds or spread among many different folds, as a common feature of protein structure. We present here a comprehensive large-scale study of non-sequential alignments between available protein structures in Protein Data Bank.  相似文献   

15.
S M King  W C Johnson 《Proteins》1999,35(3):313-320
We have developed a program to convert the three dimensional coordinates describing protein structure in the Brookhaven Data Bank into an assignment of secondary structure. The program assigns secondary structure in the same way a person assigns structure visually. It uses two angles and three distances to assign alpha-helix, 3(10)-helix, beta-strand, hydrogen-bonded beta-turn, non-hydrogen-bonded beta-turn, and poly (L-proline) II type 3(1)-helix. The program is concerned with amide-amide interactions and should be particularly useful to spectroscopists.  相似文献   

16.
A symposium celebrating the 40th anniversary of the Protein Data Bank archive (PDB), organized by the Worldwide Protein Data Bank, was held at Cold Spring Harbor Laboratory (CSHL) October 28-30, 2011. PDB40's distinguished speakers highlighted four decades of innovation in structural biology, from the early?era of structural determination to future directions for the field.  相似文献   

17.
PDBx/mmCIF, Protein Data Bank Exchange (PDBx) macromolecular Crystallographic Information Framework (mmCIF), has become the data standard for structural biology. With its early roots in the domain of small-molecule crystallography, PDBx/mmCIF provides an extensible data representation that is used for deposition, archiving, remediation, and public dissemination of experimentally determined three-dimensional (3D) structures of biological macromolecules by the Worldwide Protein Data Bank (wwPDB, wwpdb.org). Extensions of PDBx/mmCIF are similarly used for computed structure models by ModelArchive (modelarchive.org), integrative/hybrid structures by PDB-Dev (pdb-dev.wwpdb.org), small angle scattering data by Small Angle Scattering Biological Data Bank SASBDB (sasbdb.org), and for models computed generated with the AlphaFold 2.0 deep learning software suite (alphafold.ebi.ac.uk). Community-driven development of PDBx/mmCIF spans three decades, involving contributions from researchers, software and methods developers in structural sciences, data repository providers, scientific publishers, and professional societies. Having a semantically rich and extensible data framework for representing a wide range of structural biology experimental and computational results, combined with expertly curated 3D biostructure data sets in public repositories, accelerates the pace of scientific discovery. Herein, we describe the architecture of the PDBx/mmCIF data standard, tools used to maintain representations of the data standard, governance, and processes by which data content standards are extended, plus community tools/software libraries available for processing and checking the integrity of PDBx/mmCIF data. Use cases exemplify how the members of the Worldwide Protein Data Bank have used PDBx/mmCIF as the foundation for its pipeline for delivering Findable, Accessible, Interoperable, and Reusable (FAIR) data to many millions of users worldwide.  相似文献   

18.
Brevicin 27, a bacteriocin produced by Lactobacillus brevis SB27, is inhibitory mainly against closely related Lactobacillus brevis and Lactobacillus büchneri strains. It was purified from the culture supernatant by a four-step purification procedure including ammonium sulfate precipitation, cation exchange, hydrophobic interaction, and reverse-phase, high performance liquid chromatographies. The purified bacteriocin was subjected to mass spectrometry, amino acid composition analysis, and sequencing by Edman degradation. It was shown to be an about 5200-Da basic protein containing a high proportion of lysine and of hydrophobic amino acids. The partial N-terminal amino acid sequence (25 residues) was unique when compared with the Protein Data Bank (PDB), Swiss Prot, and Protein Information Resource (PIR) data banks and to the translated Gen Bank. Received: 24 July 1996 / Accepted: 10 September 1996  相似文献   

19.
Data on the established DNA Bank were summarized. The DNA Bank included workers of the Mayak nuclear facility in the Southern Ural, who were exposed to chronic radiation predominantly from external gamma-rays in different doses, and their families for the future study on radiation mutations in somatic cells of parents and possible transmission of genome instability through the germline. At present the DNA Bank contains genetic material from 1500 individuals, among whom there are 223 families.  相似文献   

20.
This Meeting Review describes the proceedings and conclusions from the inaugural meeting of the Electron Microscopy Validation Task Force organized by the Unified Data Resource for 3DEM (http://www.emdatabank.org) and held at Rutgers University in New Brunswick, NJ on September 28 and 29, 2010. At the workshop, a group of scientists involved in collecting electron microscopy data, using the data to determine three-dimensional electron microscopy (3DEM) density maps, and building molecular models into the maps explored how to assess maps, models, and other data that are deposited into the Electron Microscopy Data Bank and Protein Data Bank public data archives. The specific recommendations resulting from the workshop aim to increase the impact of 3DEM in biology and medicine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号