首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
Decapentaplegic (Dpp), a Drosophila TGF beta/bone morphogenetic protein homolog, functions as a morphogen to specify cell fate along the anteroposterior axis of the wing. Dpp is a heparin-binding protein and Dpp signal transduction is potentiated by Dally, a cell-surface heparan sulfate proteoglycan, during assembly of several adult tissues. However, the molecular mechanism by which the Dpp morphogen gradient is established and maintained is poorly understood. We show evidence that Dally regulates both cellular responses to Dpp and the distribution of Dpp morphogen in tissues. In the developing wing, dally expression in the wing disc is controlled by the same molecular pathways that regulate expression of thick veins, which encodes a Dpp type I receptor. Elevated levels of Dally increase the sensitivity of cells to Dpp in a cell autonomous fashion. In addition, dally affects the shape of the Dpp ligand gradient as well as its activity gradient. We propose that Dally serves as a co-receptor for Dpp and contributes to shaping the Dpp morphogen gradient.  相似文献   

14.
15.
16.
Saller E  Bienz M 《EMBO reports》2001,2(4):298-305
Brinker is a nuclear protein that antagonizes Dpp signalling in Drosophila. Its expression is negatively regulated by Dpp. Here, we show that Brinker represses Ultrabithorax (Ubx) in the embryonic midgut, a HOX gene that activates, and responds to, the localized expression of Dpp during endoderm induction. We find that the functional target for Brinker repression coincides with the Dpp response sequence in the Ubx midgut enhancer, namely a tandem of binding sites for the Dpp effector Mad. We show that Brinker efficiently competes with Mad in vitro, preventing the latter from binding to these sites. Brinker also competes with activated Mad in vivo, blocking the stimulation of the Ubx enhancer in response to simultaneous Dpp signalling. These results indicate how Brinker acts as a dominant repressor of Dpp target genes, and explain why Brinker is a potent antagonist of Dpp.  相似文献   

17.
18.
19.
Decapentaplegic (Dpp) signaling determines the number of cells that migrate dorsally to form the dorsal primary branch during tracheal development. We report that Dpp signaling is also required for the differentiation of one of three different cell types in the dorsal branches, the fusion cell. In Mad mutant embryos or in embryos expressing dominant negative constructs of the two type I Dpp receptors in the trachea the number of cells expressing fusion cell-specific marker genes is reduced and fusion of the dorsal branches is defective. Ectopic expression of Dpp or the activated form of the Dpp receptor Tkv in all tracheal cells induces ectopic fusions of the tracheal lumen and ectopic expression of fusion gene markers in all tracheal branches. Among the fusion marker genes that are activated in the trachea in response to ectopic Dpp signaling is Delta. In conditional Notch loss of function mutants additional tracheal cells adopt the fusion cell fate and ectopic expression of an activated form of the Notch receptor in fusion cells results in suppression of fusion cell markers and disruption of the branch fusion. The number of cells that express the fusion cell markers in response to ectopic Dpp signaling is increased in Notch(ts1) mutants, suggesting that the two signaling pathways have opposing effects in the selection of the fusion cells in the dorsal branches.  相似文献   

20.
Previous studies have shown that the transforming growth factor (TGF)β/Alk1/Smad1 signaling pathway is constitutively activated in a subset of systemic sclerosis (SSc) fibroblasts and this pathway is a critical regulator of CCN2 gene expression. Caveolin-1 (cav-1), an integral membrane protein and the main component of caveolae, has also been implicated in SSc pathogenesis. This study was undertaken to evaluate the role of caveolin-1 in Smad1 signaling and CCN2 expression in healthy and SSc dermal fibroblasts. We show that a significant subset of SSc dermal fibroblasts has up-regulated cav-1 expression in vitro, and that cav-1 up-regulation correlates with constitutive Smad1 phosphorylation. In addition, basal levels of phospho-Smad1 were down-regulated after inhibition of cav-1 in SSc dermal fibroblasts. Caveolin-1 formed a protein complex with Alk1 in dermal fibroblasts, and this association was enhanced by TGFβ. By using siRNA against cav-1 and adenoviral cav-1 overexpression we demonstrate that activation of Smad1 in response to TGFβ requires cav-1 and that cav-1 is sufficient for Smad-1 phosphorylation. We also show that cav-1 is a positive regulator of CCN2 gene expression, and that it is required for the basal and TGFβ-induced CCN2 levels. In conclusion, this study has revealed an important role of cav-1 in mediating TGFβ/Smad1 signaling and CCN2 gene expression in healthy and SSc dermal fibroblasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号