首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
D B Wilson 《Teratology》1978,17(2):115-135
The neural tube in normal (+/+), heterozygous (Lp/+), and abnormal (Lp/Lp) mutant mouse embryos ranging in age from 10 to 12 days of gestation was studied by means of transmission electron microscopy. In the abnormal embryos, ventricular cells in defective regions of the brain show distortions and crowding together of internal cellular processes and a decrease in blebs and bulbous projections, as compared with their normal counterparts. At 12 days' gestation the abnormal brains show a scarcity of the T-shaped internal cellular processes characteristic of normal brains. The abnormal brains also show increased amounts of intercellular space and extensive gaps between the cells, particularly in basal regions. There are no striking differences between the normal and abnormal brains at 10 to 12 days' gestation with respect to the appearance and distribution of cilia, microfilaments, microtubules, tight junctions, and ribosomes.  相似文献   

2.
The surface ultrastructure of the subfornical organ (SFO) was investigated in the Japanese quail. The SFO consists of a body and a stalk. The body of the SFO can be divided into rostral and caudal parts. On the rostral part, each ependymal cell possesses a short central solitary cilium; clustered cilia are also occasionally seen. Microvilli are abundant. On the caudal part, cells with a solitary cilium are fewer in number, and clustered cilia are rarely found. Microvilli are not as abundant as on the rostral part. In addition, large bulbous protrusions, tufts of small protrusions, deep funnel-shaped hollows, small pinocytotic invaginations and possible cerebrospinal fluid-contacting axons are sporadically observed on the surface of various regions of the body. Each ependymal cell of the stalk has a wide apical surface. A central solitary cilium, microvilli and other structures are observed more rarely on the stalk than on the body, while clustered cilia are not seen on the stalk. These structures are compared with those of the mammalian SFO and further discussed in relation to the possible dipsogenic receptor function for angiotensin II.  相似文献   

3.
The organization of the stomach in the compound styelid ascidian, Polyandrocarpa misakiensis, is described, and the morphology and cell types of the stomach is discussed from the phylogenetic viewpoint. The stomach is a sac-like organ whose wall is formed into longitudinal folds. The stomach consists of external and internal epithelium. The internal epithelium is simple columnar, except for the bottom of the folds. There are five cell types: absorptive cells, zymogenic cells, endocrine cells, ciliated mucous cells, and undifferentiated cells. The absorptive cells have numerous microvilli. The apical region of these cells is occupied by coated vesicles. The zymogenic cells have a conical outline and a few microvilli on their apical surfaces. There are secretory granules in the apical region of zymogenic cells. The endocrine cells have low cell height and electron-dense granules around the nucleus. Endocrine cells have one or two cilia and a few microvilli on the apical surfaces. The basolateral part of these cells often bulges into the adjoining cells. Immunoelectron microscopy revealed that some endocrine cells have serotonin-like immunoreactivity. The ciliated mucous cells are restricted to a single ventral groove. They have numerous microvilli and a few cilia on their apical surfaces. Moderately electron-dense granules are accumulated in the apical part of the ciliated mucous cells. Undifferentiated cells, filled with free ribosomes, form a pseudostratified epithelium in the base of each fold. The nucleus of undifferentiated cells has a prominent nucleolus. The pseudostratified epithelium of the pyloric caecum consists of electron-dense and electron-light cells.  相似文献   

4.
Most vertebrates have two nasal epithelia: the olfactory epithelium (OE) and the vomeronasal epithelium (VNE). The apical surfaces of OE and VNE are covered with cilia and microvilli, respectively. In rodents, signal transduction pathways involve G alpha olf and G alpha i2/G alpha o in OE and VNE, respectively. Reeve's turtles (Geoclemys reevesii) live in a semiaquatic environment. The aim of this study was to investigate the localization of G proteins and the morphological characteristics of OE and VNE in Reeve's turtle. In-situ hybridization analysis revealed that both G alpha olf and G alpha o are expressed in olfactory receptor neurons (ORNs) and vomeronasal receptor neurons (VRNs). Immunocytochemistry of G alpha olf/s and G alpha o revealed that these two G proteins were located at the apical surface, cell bodies, and axon bundles in ORNs and VRNs. Electron microscopic analysis revealed that ORNs had both cilia and microvilli on the apical surface of the same neuron, whereas VRNs had only microvilli. Moreover G alpha olf/s was located on only the cilia of OE, whereas G alpha o was not located on cilia but on microvilli. Both G alpha olf/s and G alpha o were located on microvilli of VNE. These results imply that, in Reeve's turtle, both G alpha olf/s and G alpha o function as signal transduction molecules for chemoreception in ORNs and VRNs.  相似文献   

5.
The ultrastructural surface features of normal differentiating ventricles in prenatal rat brains, days 13–21 of pregnancy, were examined with a Cambridge “Stereoscan” scanning electron microscope (SEM) (40-30,000 ×). All tissues were fixed in 3% buffered glutaraldehyde, glycerinated (16%), dehydrated in graded ethanol, infiltrated with amyl acetate, and critical-point dried in CO2. Specimens were plated with approximately 50–100 Å of gold and palladium prior to viewing with the SEM (5–20 kV).Ependyma and choroid plexuses showed early, consistent differences in their respective morphology and relative rates of differentiation. Within the telencephalic and myelencephalic ventricles distinct regional variations in cellular projections were observed along the ependyma as early as day 13 of gestation. Choroid plexuses in day 14 embryos were densely covered with microvilli and short cilia. By day 16 of pregnancy, embryonic ventricular surfaces revealed tufts of cilia and numerous, varied microvilli, reminiscent of the adult picture. The results demonstrate the early development of a variety of surface features previously thought to arise later in organogenesis. Based on information received from the SEM, it appears early rat embryos definitely possess the morphological differentiation commensurate with early cerebrospinal fluid (CSF) functioning, e.g., fluid movement, removal of debris, and secretion and absorption of CSF.  相似文献   

6.
Summary The ultrastructure of the apical plate of the free-swimming pilidium larva of Lineus bilineatus (Renier 1804) is described with particular reference to the multiciliated collar cells. In the multiciliary collar cells there are several, up to 12, cilia surrounded by a collar of about 20 microvilli extending from the cells' apical surface. The cilia have the typical 9+2 axoneme arrangement and are equipped with striated caudal rootlets extending from the basal bodies. No accessary centriole or rostral rootlet were observed. Microvilli surrounding the cilia are joined in a cylindrical manner by a mucus-like substance to form a collar. In comparison with many sensory receptor cells built on a collar cell plan the multiciliary collar cells of the pilidium larva apical plate are rather simple and unspecialized. In other pilidium larvae monociliated collar cells are found in the apical plate. The possible function and phylogenetic implications of multiciliated collar cells in Nemertini are briefly discussed.List of Abbreviations a axoneme - b basal body - c cilia or flagella - d desmosome - G Golgi apparatus - m mitochondria - mf microfilaments - mu mucus - mv microvilli - n nucleus - nt neurotubules - pm plasma membrane - r rootlet - ri ribosomes - v secretory vesicles  相似文献   

7.
Summary The ultrastructural organization of the perinatal hypothalamus and the dynamics of neuronal and ependymal growth and plasticity were examined in this investigation. The brains of fetal rats 16, 17 and 18 days in utero and those of postnatal rats 1–16 days post partum were fixed with aldehyde fixatives and prepared for combined SEM/TEM analysis. By day 17 in utero the ventricular (ependymal) surfaces of the fetal thalamic wall, cerebral vesicle and rhomboid fossa were relatively well differentiated with cilia and microvilli. Type II histiocytes were the first supraependymal cell to appear upon the ventricular lumen and were evident by day 17 in utero. In contrast, the apical surfaces of tanycytes of the infundibular recess as well as those of most other circumventricular organs were poorly differentiated and unremarkable. Tanycytes of the infundibular recess exhibited a simple hexagonal mosaic pattern of apposed plasmalemmata and even by day 1 post partum few cilia or microvilli were evident.By day 5–6 post partum Type I supraependymal neurons and axonal processes began to make their appearance with some emerging from the underlying parenchyma of the median eminence. By day 16 post partum the ventricular surface of the infundibular recess was comparable with that of the adult.The Type I supraependymal neurons are remarkably similar in their ultrastructural organization with parvicellular neurosecretory neurons elsewhere in the endocrine hypothalamus. Their emergence at day 5–6 post partum suggests a possible correlation with the critical period of sexual differentiation and a potential receptor role for this cell line. On the contrary this phenomenon may simply be a developmental anomaly. Nonetheless, the mergence of such elements upon the lumen of the third cerebral ventricle underscores a remarkable degree of neuronal plasticity in the perinatal hypothalamus.Supported by USPHS Program Project Grant NS 11642-04 and USPHS-BRSG Grant RR-05403.The authors wish to thank N. Kutryeff for her excellent technical assistance  相似文献   

8.
Summary The features of the apical and lateral surfaces of cells of the vomeronasal epithelium were studied in adult male mice by scanning electron microscopy. Supporting cells and receptor cells of the neuroepithelium are covered with microvilli. Microvilli of the sensory cells are longer and thinner than those of the supporting cells. Additionally, the former differ in local distribution, orientation, occurrence of branching and appearance of the cell coat. The receptor-free epithelium consists most likely of one cell type only, which shows different structural modifications including the presence, number and length of microvilli and cilia. In the transitional region, between the neuroepithelium and the receptor-free epithelium, immature receptor cells are present.This paper is dedicated to Prof. A. JinoSupported by grants from the Alexander von Humboldt-Stiftung and the Deutsche Forschungsgemeinschaft (Br. 358/5-1)  相似文献   

9.
General features observed on the surface of Philophthalmus megalurus and Philophthalmus gralli rediae include 2 rounded ambulatory buds, a tapered tail, a slitlike birth pore, and an oral opening surrounded by uniciliate sensory receptors. The tegument is folded in a ribbed pattern and is covered with small microvilli. The sensory receptors are concentrated on the lip of the oral opening but are less dense inside the buccal cavity. Both the birth pore and the buccal cavity are lined with a honeycomblike surface that may support the structural integrity of these highly extensible orifices. Major differences between the 2 species were noted in the structure of the sensory receptors. In P. megalurus they have flexible cilia that originate from a bulbous tegumental base. Receptors of P. gralli rediae are less dense, appear to have rigid cilia, and lack a bulbous base. In general P. megalurus rediae resemble more closely rediae of the philophthalmid Parorchis acanthus than they do those of P. gralli.  相似文献   

10.
Summary The cement gland was studied from stage 17, when the anlage is established, to stage 49, shortly before its disappearance. At early stages, the apical membrane is covered by small microvilli that are more abundant than in the surrounding epiblast cells. Vesicular protrusions along the cell boundaries are also more numerous in the gland cells.When the gland reaches maturity, the apical membranes of gland cells differentiate into two regions. In the cranial, kidney-shaped region, the membranes are very narrow and protrude above the level of cell boundaries. Long and slender villi raise from the surface adjacent to cell boundaries. Apical surfaces in the caudal portion are larger and flattened. Cell boundaries are lined with shorter and thicker surface projections. At these stages, the bordering cells are covered with secretion vesicles.During involution the number of cells is progressively reduced. The area of the caudal portion increases relative to the area of the cranial portion. Apical surfaces become more flattened. Surface projections become much shorter and invade the whole of the apical surface. Bordering cells lose their secretion vesicles and their apical surface becomes ruffled with numerous short wrinkles. The significance of the apical structures and their evolution is discussed.  相似文献   

11.
The ultrastructure of the digestive tract of tornaria larva of enteropneusts was investigated. It showed that the digestive tract consists of three parts: esophagus, stomach, and intestine. The esophagus epithelium consists of two types of multiciliated epithelial cells and solitary muscle cells. Axonal tracts and neurons were found in the ventral wall of the esophagus. The cardiac sphincter contains an anterior band of strongly ciliated cells and a posterior band of cells with long vacuolized processes which partition the sphincter lumen. The stomach consists of three cell types: (1) cells with electron-opaque cytoplasm, bearing a fringed border on their apical sides; (2, 3) sparse cells with electron-light cytoplasm and different patterns of apical microvilli. Cells of the pyloric sphincter bear numerous cilia and almost no microvilli. The intestine consists of three parts. The anterior part is formed of multiciliated cells which bear the fringed border. The middle part consists of flattened cells bearing rare cilia and vast numbers of mace-like microvilli. The posterior part of the intestine is formed of cells bearing numerous cilia and few microvilli. Muscle cells were not found in either stomach or intestine epithelium. One noticed that the structure of the digestive tract of enteropneust tornaria larva differs from that of echinoid pluteus larva.  相似文献   

12.
Actin microfilaments were localized in quail oviduct ciliated cells using decoration with myosin subfragment S1 and immunogold labeling. These polarized epithelial cells show a well developed cytoskeleton due to the presence of numerous cilia and microvilli at their apical pole. Most S1-decorated microfilaments extend from the microvilli downward towards the upper part of the ciliary striated rootlets with which they are connected. From the microvillous roots, a few microfilaments connect the proximal part of the basal body or the basal foot associated with the basal body. Microfilament polarity is shown by S1 arrowheads pointing away from the microvillous tip to the cell body. Furthermore, short microfilaments are attached to the plasma membrane at the anchoring sites of basal bodies and run along the basal body. The polarity of these short microfilaments is directed from the basal body anchoring fibers downward to the cytoplasm. At the cell periphery, microfilaments from microvillous roots and ciliary apparatus are connected with those of the circumferential actin belt which is associated with the apical zonula adhaerens. Together with the other cytoskeletal elements, the microfilaments increase ciliary anchorage and could be involved in the coordination of ciliary beating. Moreover, microvilli surrounding the cilia probably modify ciliary beating by offering resistance to cilium bending. The presence of microvilli could explain the fact that mainly the upper part of the cilia appanars to be involved in the axonemal bending in metazoan ciliated cells.  相似文献   

13.
Fascin is an actin-bundling protein that is found in membrane ruffles, microspikes, and stress fibers. The expression of fascin is greatly increased in many transformed cells, as well as in specialized normal cells including neuronal cells and antigen-presenting dendritic cells. A morphological characteristic common to these cells expressing high levels of fascin is the development of many membrane protrusions in which fascin is predominantly present. To examine whether fascin contributes to the alterations in microfilament organization at the cell periphery, we have expressed fascin in LLC-PK1 epithelial cells to levels as high as those found in transformed cells and in specialized normal cells. Expression of fascin results in large changes in morphology, the actin cytoskeleton, and cell motility: fascin-transfected cells form an increased number of longer and thicker microvilli on apical surfaces, extend lamellipodia-like structures at basolateral surfaces, and show disorganization of cell–cell contacts. Cell migration activity is increased by 8–17 times when assayed by modified Boyden chamber. Microinjection of a fascin protein into LLC-PK1 cells causes similar morphological alterations including the induction of lamellipodia at basolateral surfaces and formation of an increased number of microvilli on apical surfaces. Furthermore, microinjection of fascin into REF-52 cells, normal fibroblasts, induces the formation of many lamellipodia at all regions of cell periphery. These results together suggest that fascin is directly responsible for membrane protrusions through reorganization of the microfilament cytoskeleton at the cell periphery.  相似文献   

14.
Summary Morphologically the surface specializations of the epithelium covering the dorsal head and ventral foot regions in Helix aspersa consists either of cilia or microvilli respectively. The epithelium at the tip of the optic tentacle is a simple one. Each epithelial cell has a number of cilia-like projections from their free surfaces. These projections usually branch at their tips into two or three slender, microvilli-like structures. From the bases of the cilia-like projections arise numerous, tubular processes which form a thick, spongy layer interspersed between these projections. The microvilli-like structures are immersed in a fine, fibrous mat; unlike the fibrous mats on the dorsal head and ventral foot epithelia this material does not autofluoresce. It is suggested that it arises from the collar cells and not from typical mucocytes. The functional relationship between these surface specializations of the optic tentacle epithelium and the abundance of sensory axons in this region is discussed. These epithelial cell projections on the tentacle probably function not only as a protective covering but also to create a fluid trap for odours in the ambient air. The various contacts between epithelial cells serve to maintain the integrity of the epithelium while allowing for stretching due to protrusion of the tentacle.This work has been supported by the Australian Research Grants Committee.  相似文献   

15.
Summary Scanning electron microscopy of the third ventricle of sheep demonstrates areas of ciliated ependymal cells at the dorsal and middle third. The cilia of the dorsal portion of the ventricle have biconcave discs that are attached to each cilium by a slender stalk. The lower third and floor of the ventricular wall, as well as the pineal recess, are largely covered by ependymal cells that possess numerous microvilli with only a few isolated cilia scattered along cell surfaces. The infundibular recess is papillated with apical blebs of the ependymal cells that project into the lumen of the recess. Measurements of these surface elements indicate an average diameter of 0.28 for cilia, 0.10 for microvilli and 0.50 for the apical blebs of the infundibular recess. The functional significance of the regional differences in surface structures is discussed in relation to cerebrospinal fluid movement, ependymoabsorption and ependymosecretion.Supported by U.S.P.H.S. Grant NS 08171.Career Development Awardee KO4 GM 70001.  相似文献   

16.
The cardiac region (pars cardiaca) of the cat's stomach was examined with light and scanning electron microscopy. The glands are simple, coiled tubular, and contain mucus-secreting cells. Their surfaces are covered with microvilli which are concentrated on the boundaries of the mucus-secreting cells. A few cells interposed between the glandular cells are probably G cells. They are identified by apical projections of long microvilli into the lumen of the gland. The surface epithelial cells lining the cardiac region are covered by minute microvilli. The muscularis mucosae is not distinctly divided into two layers. However, a group of smooth muscle cells which are directed in a circular manner around the gastroesophageal junction is considered to be the distal esophageal sphincter.  相似文献   

17.
Summary The apical cell coat of the olfactory epithelium proper and the vomeronasal neuroepithelium of the rat was investigated electronmicroscopically by means of the Ruthenium-red reaction. In the olfactory epithelium proper, the cilia of receptor cells and microvilli of supporting cells possess a cell coat measuring approximately 10 nm in thickness. In the vomeronasal neuroepithelium, the apical cell coat is thicker than in the olfactory epithelium proper. On microvilli of vomeronasal receptor cells the cell coat varies in thickness from 15 to 20 nm, and on microvilli of supporting cells it measures approximately 75 nm. The functional implications of these findings are discussed.A portion of this study was presented at the 6th European Anatomical Congress in Hamburg. This publication is dedicated to Prof. E. KlikaSupported by the Deutsche Forschungsgemeinschaft (Br 358/5-1).  相似文献   

18.
The epidermis of the land planarian Bipalium adventitium was examined by light and electron microscopy. In all regions, the epidermis consists of a simple columnar ciliated epithelium associated with a prominent basement membrane. The epithelial cells, possessing abundant microvilli and poorly developed terminal webs, are conjoined laterally at their apical ends by septate junctions. The epidermis of the creeping sole is distinguished from that of adjoining regions by a “insunken” condition of the epithelial cells, a greater number of cilia per cell, and an absence of glandular secretions other than mucus. The insunken cells of the sole possess large glycogen disposits and attributes of metabolically active cells. Unusual intranuclear inclusions of unknown significance are also found in many of the epidermal cells in all regions. The basement membrane lacks distinct layering and consists of fine fibrils displaying a beaded appearance but no obvious cross-banding. Histochemical tests indicate that the fibrils are collagenous. In addition to mucus, secretory material found in nonsole regions includes lamellated granules and rhabdites, both stained intensely by acidic dyes. Rhabdites and the basement membrane also contain disulfide-enriched proteins. In scanning electron micrographs, the sole appears as a faint, longitudinally oriented band extending along the entire length of the animal. In all regions except the sensory border of the head, the microvilli are generally obscured by the densely arranged cilia. The sensory border consists of a row of toothlike papillae and grooves covered almost exclusively by microvilli, small club-shaped structures, and larger spherical protrusions.  相似文献   

19.
Cilia-lacking respiratory cells in ciliary aplasia   总被引:1,自引:0,他引:1  
This report describes the ultrastructural alterations observed in the nasal and bronchial mucosa of an 11-yr-old male suffering from immotile cilia syndrome (ICS). The morphological features observed in this patient are consistent with a ciliary aplasia. In fact, ciliated cells appeared to be replaced by columnar cells lacking cilia and basal bodies, and bearing on their surface cilium-like projections without any internal axonemal structure. In spite of the absence of basal bodies, centrioles, and kinocilia, these cells unexpectedly showed mature striated roots and centriolar precursor material scattered throughout the apical cytoplasm. These data suggest that control over basal body assembly is distinct from control over striated root formation. The presence of the above-reported structures in cells otherwise presenting many morphological features of normal ciliated cells is discussed on the basis of current knowledge of respiratory cilia biogenesis.  相似文献   

20.
Actin filaments were identified in the epithelial cells of rat uterus following detergent extraction and decoration of microfilaments (MF) with myosin subfragment 1 (S1). MF connections with cytoplasmic organelles and the apical plasma membrane are also described. Transmission electron microscopy revealed that the regular microvilli of non-pregnant, oestrous animals contain several decorated MF with rootlets descending into a densely filamentous terminal web. Following mating, the actin cytoskeleton was examined on days 1, 3 and 6 of pregnancy. In this period, the irregular projections that replace MV assumed an underlying, dense network of decorated MF, whilst smoother surfaces displayed few cytoplasmic filaments. At the time of blastocyst implantation, a structured terminal web was no longer present. Structural details were revealed concerning the contents of large, bleb-like projections found on the apical surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号