首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using a previously developed filter adsorption technique, the inactivation of a human rotavirus, a coxsackievirus B5, and a bovine parvovirus was monitored during sludge treatment processes. During conventional anaerobic mesophilic digestion at 35 to 36 degrees C, only minor inactivation of all three viruses occurred. The k' values measured were 0.314 log10 unit/day for rotavirus, 0.475 log10 unit/day for coxsackievirus B5, and 0.944 log10 unit/day for parvovirus. However, anaerobic thermophilic digestion at 54 to 56 degrees C led to rapid inactivation of rotavirus (k' greater than 8.5 log10 units/h) and of coxsackievirus B5 (k' greater than 0.93 log10 unit/min). Similarly, aerobic thermophilic fermentation at 60 to 61 degrees C rapidly inactivated rotavirus (k' = 0.75 log10 unit/min) and coxsackievirus B5 (k' greater than 1.67 log10 units/min). Infectivity of parvovirus, however, was only reduced by 0.213 log10 unit/h during anaerobic thermophilic digestion and by 0.353 log10 unit/h during aerobic thermophilic fermentation. Furthermore, pasteurization at 70 degrees C for 30 min inactivated the parvovirus by 0.72 log10 unit/30 min. In all experiments the contribution of temperature to the total inactivation was determined separately and was found to be predominant at process temperatures above 54 degrees C. In conclusion, the most favorable treatment to render sludge hygienically safe from the virological point of view would be a thermal treatment (60 degrees C) to inactivate thermolabile viruses, followed by an anaerobic mesophilic digestion to eliminate thermostable viruses that are more sensitive to chemical and microbial inactivations.  相似文献   

2.
Inactivation of animal viruses during sewage sludge treatment.   总被引:3,自引:2,他引:1       下载免费PDF全文
Using a previously developed filter adsorption technique, the inactivation of a human rotavirus, a coxsackievirus B5, and a bovine parvovirus was monitored during sludge treatment processes. During conventional anaerobic mesophilic digestion at 35 to 36 degrees C, only minor inactivation of all three viruses occurred. The k' values measured were 0.314 log10 unit/day for rotavirus, 0.475 log10 unit/day for coxsackievirus B5, and 0.944 log10 unit/day for parvovirus. However, anaerobic thermophilic digestion at 54 to 56 degrees C led to rapid inactivation of rotavirus (k' greater than 8.5 log10 units/h) and of coxsackievirus B5 (k' greater than 0.93 log10 unit/min). Similarly, aerobic thermophilic fermentation at 60 to 61 degrees C rapidly inactivated rotavirus (k' = 0.75 log10 unit/min) and coxsackievirus B5 (k' greater than 1.67 log10 units/min). Infectivity of parvovirus, however, was only reduced by 0.213 log10 unit/h during anaerobic thermophilic digestion and by 0.353 log10 unit/h during aerobic thermophilic fermentation. Furthermore, pasteurization at 70 degrees C for 30 min inactivated the parvovirus by 0.72 log10 unit/30 min. In all experiments the contribution of temperature to the total inactivation was determined separately and was found to be predominant at process temperatures above 54 degrees C. In conclusion, the most favorable treatment to render sludge hygienically safe from the virological point of view would be a thermal treatment (60 degrees C) to inactivate thermolabile viruses, followed by an anaerobic mesophilic digestion to eliminate thermostable viruses that are more sensitive to chemical and microbial inactivations.  相似文献   

3.
The uncoupling activities of more than 20 salicylanilides were measured in rat liver mitochondria. The activities, expressed as the minimum concentrations required for full release of state-4 respiration, ranged over three orders of magnitude. The acid dissociation constant, pKA, and the partition coefficient between octanol and water (Poct) of some of the salicylanilides were determined. These two parameters were found to be well expressed in terms of the Hammett constant, sigma, and the hydrophobic substituent coefficient, II, respectively. The pKA and log Poct values of all the salicylanilides were predicted according to these relationships. Furthermore, the capacity factor, k', on high-performance liquid chromatography was determined on glyceryl-coated-controlled pore glass (gly-CPG). Values of log k' correlated well with those of log Poct. The uncoupling activities of the salicylanilides were analyzed in terms of these three parameters. Both hydrophobic and electron-withdrawing properties were found to be essential for induction of potent uncoupling activity. The correlations using log k' were better than those using log Poct.  相似文献   

4.
The finding that the activity of the multicatalytic proteinase complex (MPC) is greatly activated by low concentrations of sodium dodecyl sulfate (SDS) and fatty acids led to the proposal that the proteolytic activity of the complex is latent and that activation is needed for expression of full activity. Kinetic examination of the nature of the latency with Cbz-Leu-Leu-Glu-2-naphthylamide, a substrate cleaved by the peptidylglutamyl-peptide hydrolyzing activity (PGPH activity) of the complex, showed that plots of velocity versus substrate concentration yield sigmoidal curves, implying the presence of two or more substrate binding sites and the presence of cooperative interactions between the sites. Hill plots of log [v/(Vmax-v)] versus log [S] gave slopes with a Hill coefficient of 2.2-2.4, suggesting that more than two subunits are expressing the PGPH activity. At saturating substrate concentrations, SDS and lauric acid exposed a masked component of PGPH activity that was about equal in magnitude to the overt activity measured in the absence of these detergents, showing that under the latter conditions only about half of the enzyme activity is expressed. Activation by SDS and lauric acid was greater at low than at high substrate concentrations and was associated with a shift of the substrate concentration at half-Vmax (apparent Km) toward lower values. The decrease in the apparent Km in the presence of SDS (but not in the presence of lauric acid) was associated with a decrease in cooperativity. The presence of at least two distinct PGPH activity components with different reactivities was also indicated by the finding of two distinct inactivation rate constants in reactions with 3,4-dichloroisocoumarin, an irreversible inhibitor of the enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Hydrophobicity, a term used to describe a fundamental physicochemical property of local anesthetics, was in the past obtained by octanol/buffer partitioning. It has been suggested that the octanol method, despite its obvious advantages, also has some drawbacks. HPLC has become an attractive alternative for the measurement of hydrophobicity and has been applied to local anesthetics recently. However, the methods in current use for measuring the hydrophobicity of local anesthetics suffer from a number of limitations and remain obscure. This study introduces a new HPLC method for measuring the hydrophobicity of eight local anesthetics in current clinical use. Using a C(18) derivatized polystyrene-divinylbenzene stationary phase HPLC column, the log k'(w) values of local anesthetics were determined by measuring the capacity factor k'(i) in the process of chromatographic separation using a hydrophobic stationary phase and a hydrophilic mobile phase. A rapid reversed-phase HPLC method was developed to directly measure log k'(w) of eight local anesthetics. A high correlation between log k'(w) and hydrophobicity (log P(oct)) from the traditional shake-flask method was obtained for the local anesthetics, demonstrating the reliability of the method. The results reveal an improved method for measuring the hydrophobicity of the local anesthetic agents in the unionized form. This simple, sensitive and reproducible approach may serve as a valuable tool for describing the physicochemical properties of novel local anesthetics.  相似文献   

6.
The inactivation and conformational changes of the multifunctional fatty acid synthase (acyl-CoA:malonyl-CoA C-acyltransferase (decarboxylating, oxoacyl- and enoyl-reducing and thioester-hydrolyzing), EC 2.3.1.85) from chicken liver have been studied in urea solution. The results show that complete inactivation of the fatty acid synthase occurs before obvious conformational changes with regard to the overall, beta-ketoacyl reduction and acetoacetyl-CoA reduction reactions. Significant conformational changes indicated by the changes of the intrinsic fluorescence emission and the circular dichroism spectra occurred at higher urea concentrations. The kinetic rate constants for the two phase inactivation and unfolding reactions were measured and semilogarithmic plots of the activity versus time gave curves which could be resolved into two straight lines, indicating that both the inactivation and unfolding processes consisted of fast and slow phases as a first-order reaction. The results from Lineweaver-Burk plots indicated that urea is a competitive inhibitor for acetyl-CoA and malonyl-CoA, with K(m) increasing with increasing urea concentrations. However, urea is a noncompetitive inhibitor for NADPH, the substrate of the overall reaction and beta-ketoacyl reduction reaction, and acetylacetate, the substrate of the beta-ketoacyl reduction reaction. Activation by low concentrations of urea was observed although this activation was only temporarily induced in an early stage of inactivation. The aggregation phenomenon of the fatty acid synthase in a certain concentration range of urea (3-4 M) was also observed during unfolding. This result shows that this multifunctional enzyme unfolds with competition with misfolding in the folding pathway. Comparison of inactivation and conformational changes of the enzyme as well as aggregation imply that unfolding intermediates may exist during urea denaturation. The possible unfolding pathway of fatty acid synthase is also discussed in this paper.  相似文献   

7.
A series of Mannich ketones were synthesized in order to study the relative importance of structure and specific substitutions in relation to their lipophilicity and antitumor activity. Substitutions were carried out with morpholinyl, pirrolidinyl, piperidyl and tetrahydro-isoquinolyl groups in various positions on three different skeletons. Lipophilicity of Mannich ketones was characterised by chromatography data (log k') and by software calculated parameters (clogP). Compounds were tested on their ability to inhibit the proliferation of the A431 human adenocarcinoma cell line evaluated by MTT and apoptosis assays. The results suggest that the higher the lipophilicity values (log k' and clogP), the higher the antitumor and apoptotic activity of Mannich ketones. Determination of lipophilicity by measuring the log k' or by calculating the clogP values of the compounds may help to predict their biological activities.  相似文献   

8.
The pH-dependent kinetics of lysyl oxidase catalysis was examined for evidence of an ionizable enzyme residue which might function as a general base catalyzing proton abstraction previously shown to be a component of the mechanism of substrate processing by this enzyme. Plots of log Vmax/Km for the oxidation of n-hexylamine versus pH yielded pKa values of 7.0 +/- 0.1 and 10.4 +/- 0.1. The higher pKa varied with different substrates, reflecting ionization of the substrate amino group. A van't Hoff plot of the temperature dependence of the lower pKa yielded a value of 6.1 kcal mol-1 for the enthalpy of ionization. This value as well as the pKa of 7.0 are consistent with those of histidine residues previously implicated as general base catalysts in enzymes. Incubation of lysyl oxidase with low concentrations of diethyl pyrocarbonate, a histidine-selective reagent, at 22 degrees C and pH 7.0 irreversibly inhibited enzyme activity by a pseudo first-order kinetic process. The inactivation of lysyl oxidase correlated with spectral and pH-dependent kinetic evidence for the chemical modification of 1 histidine residue/mol of enzyme, the pKa of which was 6.9 +/- 0.1, within experimental error of that seen in the plot of log Vmax/Km versus pH. Enzyme activity was restored by incubation of the modified enzyme with hydroxylamine, consistent with the ability of this nucleophile to displace the carbethoxy group from N-carbethoxyhistidine. The presence of the n-hexylamine substrate largely protected against enzyme inactivation by diethyl pyrocarbonate. These results thus indicate a functional role for histidine in lysyl oxidase catalysis consistent with that of a general base in proton abstraction.  相似文献   

9.
3-Ketovalidoxylamine A C-N lyase of Flavobacterium saccharophilum is a monomeric protein with a molecular weight of 36,000. Amino acid analysis revealed that the enzyme contains 5 histidine residues and no cysteine residue. The enzyme was inactivated by diethylpyrocarbonate (DEP) following pseudo-first order kinetics. Upon treatment of the inactivated enzyme with hydroxylamine, the enzyme activity was completely restored. The difference absorption spectrum of the modified versus native enzyme exhibited a prominent peak around 240 nm, but there was no absorbance change above 270 nm. The pH-dependence of inactivation suggested the involvement of an amino acid residue having a pKa of 6.8. These results indicate that the inactivation is due to the modification of histidine residues. Substrates of the lyase, p-nitrophenyl-3-ketovalidamine, p-nitrophenyl-alpha-D-3-ketoglucoside, and methyl-alpha-D-3-ketoglucoside, protected the enzyme against the inactivation, suggesting that the modification occurred at or near the active site. Although several histidine residues were modified by DEP, a plot of log (reciprocal of the half-time of inactivation) versus log (concentration of DEP) suggested that one histidine residue has an essential role in catalysis.  相似文献   

10.
The influence of five different N-terminal protecting groups (For, Ac, Boc, Z, and Fmoc) and reaction conditions (temperature and dimethylformamide content) on the alpha-chymotrypsin-catalyzed synthesis of the dipeptide derivative X-Phe-Leu-NH(2) was studied. Groups such as For, Ac, Boc, and Z always rendered good peptide yields (82% to 85%) at low reaction temperatures and DMF concentrations, which depended on the N-alpha protection choice. Boc and Z were the most reactive N-alpha groups and, in addition, the most suitable for peptide synthesis. On the other hand, the use of empirical design methodologies allowed, with minimal experimentation and by multiple regression, to deduce an equation, which correlates the logarithm of the first order kinetic constant (log k') with reaction temperature, DMF concentration, and hydrophobicity (log P values) of the different protecting groups. The predictive value of the equation was tested by comparing the performance of another protective group, such as Aloc, with the performance predicted by said equation. Experimental and calculated k' values were found to be in good agreement.  相似文献   

11.
The activity of glutaraldehyde (GTA) at low concentrations (less than 2%) against poliovirus was assessed by a suspension procedure. The inactivation kinetics showed that concentrations of less than or equal to 0.10% were effective against purified poliovirus at pH 7.2; a 1 log10 reduction was obtained in 70 min with 0.02% GTA, and a 3 log10 reduction was obtained in 30 min with 0.10% GTA. GTA activity at low concentrations was greatly enhanced at alkaline pH, but was completely abolished at acid pH. In contrast, the inactivation assays on poliovirus RNA showed that it was highly resistant to GTA at concentrations up to 1.0% at pH 7.2. At pH 8.3 a low inactivation was noticed with 1.0% GTA. Our results are of relevance to hospital practice in digestive endoscopy investigations because there has been an increasing tendency to use low concentrations of GTA and very short contact times in disinfection procedures.  相似文献   

12.
The heat inactivating effect of low-pressure carbonation (LPC) at 1 MPa against Escherichia coli was enhanced to 3.5log orders. This study aimed to investigate the mechanisms of this increase in heat inactivation efficiency. The increased inactivation ratio was found to be the result of LPC-induced heat sensitization. This sensitization was not due to any physical damage to the cells as a result of the treatment. Following the depletion of intracellular ATP, the failure of the cells to discard protons caused an abnormal decrease in the intracellular pH. However, in the presence of glucose, the inactivation ratio decreased. In addition, a further increase in inactivation of more than 2log orders occurred in the presence of the protein synthesis inhibitor chloramphenicol. Hence, the decreased heat resistance of E. coli under LPC was most likely due to a depletion of intracellular ATP and a decreased capacity for protein synthesis.  相似文献   

13.
The activity of glutaraldehyde (GTA) at low concentrations (less than 2%) against poliovirus was assessed by a suspension procedure. The inactivation kinetics showed that concentrations of less than or equal to 0.10% were effective against purified poliovirus at pH 7.2; a 1 log10 reduction was obtained in 70 min with 0.02% GTA, and a 3 log10 reduction was obtained in 30 min with 0.10% GTA. GTA activity at low concentrations was greatly enhanced at alkaline pH, but was completely abolished at acid pH. In contrast, the inactivation assays on poliovirus RNA showed that it was highly resistant to GTA at concentrations up to 1.0% at pH 7.2. At pH 8.3 a low inactivation was noticed with 1.0% GTA. Our results are of relevance to hospital practice in digestive endoscopy investigations because there has been an increasing tendency to use low concentrations of GTA and very short contact times in disinfection procedures.  相似文献   

14.
A series of benzyl cyanide analogs have been studied as substrates and inhibitors of dopamine beta-hydroxylase to extend our initial report (Baldoni, J. M., and Villafranca, J. J. (1980) J. Biol. Chem. 255, 8987-8990) which showed that p-hydroxybenzyl cyanide was a suicide substrate of dopamine beta-hydroxylase. Thus, the appVmax values for benzyl cyanide analogs decrease in the order p-OH greater than m-OH greater than H much greater than p-OCH3,m-OCH3; the m-OH, m-OCH3 and p-OCH3 analogs are competitive inhibitors versus tyramine in initial velocity studies. The Vmax values for tyramine and p-hydroxybenzyl cyanide are nearly identical at saturating O2 and ascorbate (pH 5.0, 37 degrees C) but the Km for O2 is 0.14 and 2.8 mM, respectively, with tyramine and p-hydroxybenzyl cyanide. Studies of the pH dependence of log V/K for tyramine show two pKa values of 5.2 and 5.8 while for m-hydroxybenzyl cyanide the values are 5.3 and 5.9. The log Vmax profile shows one pKa of 5.9 with tyramine as substrate. Thus, nearly identical enzymic groups are involved in binding and/or catalysis with these two substrates. All the benzyl cyanide analogs are suicide inactivators of dopamine beta-hydroxylase. With m-hydroxybenzyl cyanide, the partition between catalysis and inactivation (kcat/kinact) changed from approximately 600 to approximately 17 as the pH varied from 5.0 to 6.7. The log kinact versus pH profile shows one pKa value of 6.0, suggesting that an enzymic group must be deprotonated for maximal inactivation. Copper was essential for the suicide inactivation of dopamine beta-hydroxylase by benzyl cyanides and kinetic studies of partially inhibited dopamine beta-hydroxylase (approximately 50%) showed that inactive enzyme molecules were completely inactive. The following papers in this series discuss the partial reactivation of suicide-inhibited dopamine beta-hydroxylase and the stoichiometry of inactivation by benzyl cyanide analogs.  相似文献   

15.
Chemical modification of beef kidney D-aspartate oxidase by phenylglyoxal is a biphasic process involving the transient formation of an enzymatic species with a decreased activity versus dicarboxylic substrates, an increased activity versus D-proline and a new activity versus other monocarboxylic D-amino acids which is absent in the native protein. Prolonged incubation with the modifier causes complete inactivation of the enzyme. The presence of the competitive inhibitor L-tartrate in the incubation mixture prevents enzyme inactivation. Kinetic and structural data suggest that complete loss of activity is paralleled by modification of eight arginine residues, of which two are critical for the specificity and the activity of the enzyme. We propose that the two essential arginine residues are located in the substrate binding site of D-aspartate oxidase.  相似文献   

16.
The Mg2+-dependent ATPase (adenosine 5'-triphosphatase) mechanism of myosin and subfragment 1 prepared from frog leg muscle was investigated by transient kinetic technique. The results show that in general terms the mechanism is similar to that of the rabbit skeletal-muscle myosin ATPase. During subfragment-1 ATPase activity at 0-5 degrees C pH 7.0 and I0.15, the predominant component of the steady-state intermediate is a subfragment-1-products complex (E.ADP.Pi). Binary subfragment-1-ATP (E.ATP) and subfragment-1-ADP (E.ADP) complexes are the other main components of the steady-state intermediate, the relative concentrations of the three components E.ATP, E.ADP.Pi and E.ADP being 5.5:92.5:2.0 respectively. The frog myosin ATPase mechanism is distinguished from that of the rabbit at 0-5 degrees C by the low steady-state concentrations of E.ATP and E.ADP relative to that of E.ADP.Pi and can be described by: E + ATP k' + 1 in equilibrium k' - 1 E.ATP k' + 2 in equilibrium k' - 2 E.ADP.Pi k' + 3 in equilibrium k' - 3 E.ADP + Pi k' + 4 in equilibrium k' - 4 E + ADP. In the above conditions successive forward rate constants have values: k' + 1, 1.1 X 10(5)M-1.S-1; k' + 2 greater than 5s-1; k' + 3, 0.011 s-1; k' + 4, 0.5 s-1; k'-1 is probably less than 0.006s-1. The observed second-order rate constants of the association of actin to subfragment 1 and of ATP-induced dissociation of the actin-subfragment-1 complex are 5.5 X 10(4) M-1.S-1 and 7.4 X 10(5) M-1.S-1 respectively at 2-5 degrees C and pH 7.0. The physiological implications of these results are discussed.  相似文献   

17.
Human liver arylsulfatase A was treated with arginine-specific reagents (diones), resulting in a loss of enzyme activitity with apparent first-order kinetics. Sulfite and borate—competitive inhibitors of the enzyme—provided complete protection from inactivation by phenylglyoxal. Sulfite and substrate each likewise protected against enzyme inactivation by 2,3-butanedione. A plot of pseudo-first-order rate constants of enzyme inactivation versus 2,3-butanedione concentrations suggests that an essential arginine residue is modified with a loss in function of the binding site or of the active site of the protein. Chemical analysis of the butanedione-treated sulfatase indicates that complete enzyme inactivation corresponds to a modification of only about 2 of the 20 arginine residues per enzyme subunit. Taken together, all of the results strongly suggest that arginine residues are essential for the activity of arylsulfatase A. An incidental discovery in this work is that borate ion is a competitive inhibitor of human arylsulfatase A with a Ki of 2.5 × 10?4 M.  相似文献   

18.
The half-time method for the determination of Michaelis parameters from enzyme progress-curve data (Wharton, C.W. and Szawelski, R.J. (1982) Biochem. J. 203, 351-360) has been adapted for analysis of the kinetics of irreversible enzyme inhibition by an unstable site-specific inhibitor. The method is applicable to a model in which a product (R) of the decomposition of the site-specific reagent, retaining the chemical moiety responsible for inhibitor specificity, binds reversibly to the enzyme with dissociation constant Kr: (formula; see text). Half-time plots of simulated enzyme inactivation time-course data are shown to be unbiased, and excellent estimates of the apparent second-order rate constant for inactivation (k +2/Ki) and Kr can be obtained from a series of experiments with varying initial concentrations of inhibitor. Reliable estimates of k +2 and Ki individually are dependent upon the relative magnitudes of the kinetic parameters describing inactivation. The special case, Kr = Ki, is considered in some detail, and the integrated rate equation describing enzyme inactivation shown to be analogous to that for a simple bimolecular reaction between enzyme and an unstable irreversible inhibitor without the formation of a reversible enzyme-inhibitor complex. The half-time method can be directly extended to the kinetics of enzyme inactivation by an unstable mechanism-based (suicide) inhibitor, provided that the inhibitor is not also a substrate for the enzyme.  相似文献   

19.
Searching for molecules possessing antitumour activity, a parallel molecule library of aromatic carboxamides has been designed and synthesised. This work resulted in a "thiophene" sub-library containing a thiophene core and of a "furoyl" sub-library with a furoyl core, respectively. In both sub-libraries substitutions were carried out with six different groups resulting in six pairs of compounds differing in only the heteroatom of aromatic ring of the cores. To study the importance of the type of cores and the specific substitutions in relation to their lipophilicity and antitumour activity, lipophilicity of carboxamides was determined by chromatographical data (log k') and by software calculated parameters (CLOGP). Pairs of compounds were tested for their ability to inhibit the proliferation of the A431 cells by MTT assay. The isosteric molecule pairs were successfully separated. Our results showed that the experimentally determined (log k') and the calculated (CLOGP) lipophilicity parameters correlated well with each other. Furthermore, lipophilicity values of the thiophene sub-library were always higher than those in the furoyl sub-library. Moreover, compounds of the thiophene sub-library were more active than their respective furoyl pairs in our MTT antiproliferative assay. From these observations we can conclude that the higher the lipophilicity values the higher the antitumour activity of the carboxamides synthesised. Therefore, determination of lipophilicity by measuring the log k' or by calculating the CLOGP values of the carboxamide sub-libraries may help to predict their biological activities.  相似文献   

20.
Horseradish peroxidase (HRP), when incubated with diethylpyrocarbonate (DEPC), shows a time-dependent loss of iodide oxidation activity. The inactivation follows pseudo-first order kinetics with a second order rate constant of 0.43 min-1 M-1 at 30 degrees C and is reversed by neutralized hydroxylamine. The difference absorption spectrum of the modified versus native enzyme shows a peak at 244 nm, characteristic of N-carbethoxyhistidine, which is diminished by treatment with hydroxylamine. Correlation between the stoichiometry of histidine modification and the extent of inactivation indicates that out of 2 histidine residues modified, one is responsible for inactivation. A plot of the log of the reciprocal half-time of inactivation against log DEPC concentration further suggests that only 1 histidine is involved in catalysis. The rate of inactivation shows a pH dependence with an inflection point at 6.2, indicating histidine derivatization by DEPC. Inactivation due to modification of tyrosine, lysine, or cysteine has been excluded. CD studies reveal no significant change in the protein or heme conformation following DEPC modification. We suggest that a unique histidine residue is required for maximal catalytic activity of HRP for iodide oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号