首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is proposed that bile acids (deoxycholic acid), the K vitamins, iron(II) complexes and oxygen interact to induce an oncogenic effect in the colon by the generation of free radicals. In the relatively low oxidising/reducing conditions of the colonic lumen the K vitamins exist in the reduced form; however, if absorbed into the mucosa they have the capacity to be chemically oxidised and to enter into a redox cycle yielding oxygen radicals. The semiquinone radical of K(1) (phylloquinone) has been stabilised in bile acid mixed micelles and investigated by electron paramagnetic resonance spectroscopy and quantum chemical calculations. The estimated half-life of the radical was about 30 min which confirms a remarkably high stability in aqueous micellar solution. A model is presented in which the reduced K vitamins may initiate superoxide radical, O2(-*) generation leading to Fe(II) mediated Fenton reactions in the stem colon cells.  相似文献   

2.
Oxygen radicals in ulcerative colitis.   总被引:28,自引:0,他引:28  
This article reviews the pathophysiologic concept that superoxide and hydrogen peroxide, generated by activated leukocytes, together with low-molecular-weight chelate iron derived from fecal sources and from denatured hemoglobin, amplify the inflammatory response and subsequent mucosal damage in patients with active episodes of ulcerative colitis. The putative pathogenic mechanisms reviewed are as follows: (1) Dietary iron is concentrated in fecal material owing to normally limited iron absorption. (2) Mucosal bleeding, characteristic of ulcerative colitis, as well as supplemental oral iron therapy for chronic anemia, further conspire to maintain or elevate mucosal iron concentration in colitis. (3) Fenton chemistry, driven especially by leukocyte-generated superoxide and hydrogen peroxide, leads to formation of hydroxyl radicals. (4) The resultant oxidative stress leads to the extension and propagation of crypt abscesses, either through direct membrane disruption by lipid peroxidation or through generation of secondary toxic oxidants such as chloramines. (5) Chemotactic products of lipid peroxidation, including 4-hydroxynonenal, provide positive feedback to accelerate this inflammatory/oxidative process, leading to acute exacerbations of the disease. (6) Other oxidized products, such as oxidized tryptophan metabolites, created by free radical mechanisms in or near the mucosa, may act as carcinogens or tumor promotors that contribute to the exceedingly high incidence of colon carcinoma in patients suffering from chronic ulcerative colitis. In this way, self-sustaining cycles of oxidant formation may amplify flare-ups of inflammation and mucosal injury in ulcerative colitis. This concept, if proved correct by subsequent research, would provide a rationale for several novel clinical approaches to the management of ulcerative colitis, including use of SOD mimetics, iron chelators, and chain-breaking antioxidants.  相似文献   

3.
Human milk contains prebiotic oligosaccharides, which stimulate the growth of intestinal bifidobacteria and lactobacilli. It is unclear whether the prebiotic capacity of human milk contributes to the larger bile salt pool size and the more efficient fat absorption in infants fed human milk compared with formula. We determined the effect of prebiotic oligosaccharides on bile salt metabolism in rats. Rats were fed a control diet or an isocaloric diet containing a mixture of galactooligosaccharides (GOS), long-chain fructooligosaccharides (lcFOS), and acidified oligosaccharides (AOS) for 3 wk. We determined synthesis rate, pool size, and fractional turnover rate (FTR) of the primary bile salt cholate by using stable isotope dilution methodology. We quantified bile flow and biliary bile salt secretion rates through bile cannulation. Prebiotic intervention resulted in significant changes in fecal and colonic flora: the proportion of lactobacilli increased 344% (P < 0.01) in colon content and 139% (P < 0.01) in feces compared with the control group. The number of bifidobacteria also increased 366% (P < 0.01) in colon content and 282% in feces after the prebiotic treatment. Furthermore, pH in both colon and feces decreased significantly with 1.0 and 0.5 pH point, respectively. However, despite this alteration of intestinal bacterial flora, no significant effect on relevant parameters of bile salt metabolism and cholate kinetics was found. The present data in rats do not support the hypothesis that prebiotics naturally present in human milk contribute to a larger bile salt pool size or altered bile salt pool kinetics.  相似文献   

4.
In the beginning, the microsomal HO system was presumed to be made of one isozymes, now known as HO-1, which was cytP450-dependent; and, was thought to be of physiological significance solely in the context of catalysis of hemoglobin heme to bile pigments and CO. A succession of discoveries including characterization of the system as an independent mono-oxygenase, identification of a second form, called HO-2, free radical quenching activity of bile pigments, analogous function of CO in cell signaling to NO, and characterization of the system as HSP32 cognates has led to such an impressive expansion in the number of reports dealing with the HO system that surpass anyone's expectation. This review is a compilation of certain older findings and recent events that together ensure placement of the HO system in the mainstream research for decades to come.  相似文献   

5.
Hydroxyl radical generation by postischemic rat kidney slices in vitro   总被引:1,自引:0,他引:1  
To quantitate the formation of hydroxyl radicals (HO.) in ischemia and reoxygenation, dimethyl sulfoxide (DMSO) was added to "trap" evolving HO. in normal, in ischemic, and in ischemic and reoxygenated rat kidney slices, incubated in short-term organ culture in vitro. Hydroxyl radical generation was measured as the accumulation of the specific product of DMSO oxidation by HO., methane sulfinic acid (MSA) in the kidney tissue and surrounding medium using a new colorimetric assay. A mean difference of 7 nmol cumulative HO./gram tissue was detected in rat kidney slices subjected to ischemia and reoxygenation. This amount of HO. generation was not significantly greater than that found in nonischemic or in ischemic but not reoxygenated control tissues, and does not appear to represent the highly toxic burst of HO. radicals implied in current theoretical discussions of reperfusion injury. However, the addition of EDTA chelated iron (1:1) to the incubation medium led to marked postischemic HO. generation. We conclude that clearly toxic numbers of HO. radicals are not formed during reoxygenation in rat kidney slices, either because there is insufficient iron, because only a small fraction of cells in the kidney tissue make oxygen radicals, or because cellular defenses against HO. formation are more powerful than currently appreciated.  相似文献   

6.
A major impediment to the confirmation of free radical mechanisms in pathogenesis is a lack of direct, chemical evidence that oxygen centered free radicals actually arise in living tissues in quantities sufficient to cause serious damage. This investigation was conducted to validate the use of dimethyl sulfoxide (DMSO) as a quantitative molecular probe for the generation of hydroxyl radicals (HO.) under physiologic conditions. Reaction of HO. with DMSO produces methane sulfinic acid (MSA) as a primary product, which can be detected by a simple colorimetric assay. To develop a method for estimating total HO. production, we studied two model systems: the superoxide driven Fenton reaction in vitro, using xanthine oxidase as the source of superoxide, and a computer model of Fenton chemistry. Measured MSA production both in vitro and in the computer model was a predictable function of the concentrations of DMSO and competing scavengers of HO., according to the principle of competition kinetics. Both experimental results and model calculations showed that Scatchard analysis may be used to infer total HO. generation, despite the presence of scavengers other than DMSO, such as mannitol. Thus, methane sulfinic acid production from DMSO holds promise as an easily measured marker for HO. formation in biologic systems pretreated with DMSO, and Scatchard analysis of repeated experiments with varying DMSO concentrations can yield an estimate of total HO. generation.  相似文献   

7.
A primary mechanism of radiation-induced DNA damage is by generation of free radicals. Chronically increased oxidative stress from elevated levels of iron in the body may increase radiation sensitivity by decreasing cellular oxygen radical scavenging capability. Hemochromatosis heterozygotes have elevated body iron. Low-level radiation sensitization by iron may be particularly pertinent for risk of breast cancer. Since 10% of the population appears to be heterozygous for the hemochromatosis gene, a radiosensitizing effect would have pervasive implications.  相似文献   

8.
Evidence of direct toxic effects of free radicals on the myocardium   总被引:2,自引:1,他引:1  
The hypothesis that oxygen-derived free radicals do indeed play a role in myocardial ischemic and reperfusion injury has received a lot of support. Experimental results have shown that free radical scavengers can protect against certain aspects of myocardial ischemic injury and that on reperfusion the heart approaches a level that is more normal than those hearts not receiving additional scavenging agents. Superoxide dismutase, catalase, glutathione peroxidase, hydroxyl radical scavengers and iron chelators such as desferrioxamine have proven successful in providing an increased level of recovery. These results indicate, as would be expected, that superoxide, hydrogen peroxide and hydroxyl radicals may all, at some point, either contribute to the injury or be important in generating a subsequent radical which causes damage. In addition, solutions capable of generating free radicals have been shown to cause damage to myocardial cells and the vascular endothelium that is similar to the damage observed during myocardial ischemic and reperfusion injury. Alterations in function, structure, flow, and membrane biochemistry have been documented and compared to ischemic injury. The continued investigation of the role of free radicals in ischemic injury is warranted in the hope of further elucidating the mechanisms involved in free radical injury, the sources of their generation, and in defining a treatment that will provide significant protection against this particular aspect of ischemic damage.  相似文献   

9.
Accumulation of hydrophobic bile acids during cholestasis leads to generation of oxygen free radicals in the liver. Accordingly, this study investigated whether polyphenols from green tea Camellia sinenesis, which are potent free radical scavengers, decrease hepatic injury caused by experimental cholestasis. Rats were fed a standard chow or a diet containing 0.1% polyphenolic extracts from C. sinenesis starting 3 days before bile duct ligation. After bile duct ligation, serum alanine transaminase increased to 760 U/l after 1 day in rats fed a control diet. Focal necrosis and bile duct proliferation were also observed after 1-2 days, and fibrosis developed 2-3 wk after bile duct ligation. Additionally, procollagen-alpha1(I) mRNA increased 30-fold 3 wk after bile duct ligation, accompanied by increased expression of alpha-smooth muscle actin and transforming growth factor-beta and the accumulation of 4-hydroxynenonal, an end product of lipid peroxidation. Polyphenol feeding blocked or blunted all of these bile duct ligation-dependent changes by 45-73%. Together, the results indicate that cholestasis due to bile duct ligation causes liver injury by mechanisms involving oxidative stress. Polyphenols from C. sinenesis scavenge oxygen radicals and prevent activation of stellate cells, thereby minimizing liver fibrosis.  相似文献   

10.
We investigated the effects of pectin with different degrees of methylation (34.5, 70.8, and 92.6%, respectively) on the composition and concentration of intestinal and fecal bile acids and neutral sterols in conventional and germfree rats. Diets containing 6.5% pectin (galacturonan) were given for 3 weeks. High concentrations of free and secondary bile acids appeared in cecum and colon of conventional rats. With increasing degree of methylation, more bile acids were transported into lower parts of intestinal tract and excreted whereas the proportion of secondary bile acids decreased. In contrast, the composition of bile acids in intestinal contents and feces was relatively unchanged in germfree rats. Exclusively cholesterol was found as a neutral sterol in germfree rats. Coprostanol appeared in cecum of conventional rats and additionally coprostanone in colon. Amounts of neutral sterols increased with increasing degree of methylation of pectin. Additionally, concentrations of bile acids in plasma decreased if the pectin-containing diets were given. Besides the degree of methylation, the molecular weight of pectin used in the diets influenced concentration and composition of intestinal and fecal steroids in rats.  相似文献   

11.
When dimethyl sulfoxide (DMSO) is oxidized via hydroxyl radical (HO(.-)), it forms methyl radicals ((.-)CH(3)) that can be spin trapped and detected by electron spin resonance (ESR). This ESR spin trapping technique has been widely used in many biological systems to indicate in vivo HO(.-) formation. However, we recently reported that (.-)CH(3) might not be the only carbon-centered radical that was trapped and detected by ESR from in vivo DMSO oxidation. In the present study, newly developed combination techniques consisting of dual spin trapping (free radicals trapped by both regular and deuterated alpha-[4-pyridyl 1]-N-tert-butyl nitrone, d(0)/d(9)-POBN) followed by LC/ESR and LC/MS were used to characterize and quantify all POBN-trapped free radicals from the interaction of HO(.-) and DMSO. In addition to identifying the two well-known free radicals, (.-)CH(3) and (.-)OCH(3), from this interaction, we also characterized two additional free radicals, (.-)CH(2)OH and (.-)CH(2)S(O)CH(3). Unlike ESR, which can measure POBN adducts only in their radical forms, LC/MS identified and quantified all three redox forms, including the ESR-active radical adduct and two ESR-silent forms, the nitrone adduct (oxidized adduct) and the hydroxylamine (reduced adduct). In the bile of rats treated with DMSO and POBN, the ESR-active form of POBN/(.-)CH(3) was not detected. However, with the addition of the LC/MS technique, we found approximately 0.75 microM POBN/(.-)CH(3) hydroxylamine, which represents a great improvement in radical detection sensitivity and reliability. This novel protocol provides a comprehensive way to characterize and quantify in vitro and in vivo free radical formation and will have many applications in biological research.  相似文献   

12.
Potato (Solanum tuberosum) cultivars differ quantitatively in their responses to mechanical stress including the ability to synthesize melanin pigments in tuber tissues. Investigations into the cellular events induced by mechanical stress on tuber tissues have shown that an early cellular response is a significant and rapid synthesis of superoxide radicals. This burst of radical production distinctively displays a reproducible biphasic pattern over time with peaks of generation at 2 and 5 h. A concomitant consequence of the generation of these free radicals is elevated levels of oxidatively modified tuber proteins. Both radical generation and protein modification vary between cultivars but both are directly proportional to the amount of melanin pigments produced. Cell-free extracts of mechanically stressed tissues, pectic fragments, and scission products generated from cell walls are able to induce superoxide generation in non-stressed tissues, indicating the participation of a biologically active factor that induces a further a phase of radical synthesis.  相似文献   

13.
Electron spin resonance (ESR) spectroscopy has been used to investigate free radical generation in rats with acute methanol poisoning. The spin trapping technique was used where a spin trapping agent, alpha-(4-pyridyl 1-oxide)-N-tert-butylnitrone (POBN), reacted with the corresponding alcohol-derived or alcohol-dependent radical to form radical adducts. One radical adduct was detected in both bile and urine samples 2 h after acute methanol poisoning in male Sprague Dawley rats. The hyperfine coupling constants for the radical adduct from [(13)C]-labeled methanol detected in the bile were a(N) = 15.58, a(beta)(H) = 2.81 G, and a(beta)(13C) = 4.53 G, which unambiguously identified this species as POBN/*CH@OH. The same radical adduct was detected in urine. The identification of a methanol-derived radical adduct in samples from bile and urine provided strong direct evidence for the generation of the alcohol-derived radicals during acute intoxication by methanol. Simultaneous administration of the alcohol dehydrogenase inhibitor 4-methylpyrazole and methanol resulted in an increase in the generation of the free radical metabolite detected in the bile. This is the first ESR evidence of methanol-derived free radical generation in an animal model of acute methanol intoxication.  相似文献   

14.
Free radicals are considered the most important cause of cellular ageing. We have investigated ageing process in the yeast Saccharomyces cerevisiae. We have compared the wild type strain with the mutant cells with constitutively active Ras oncogen, which generates increased amounts of free radicals. Increased generation of oxygen-derived free radicals resulted in the Ras mutant cells accumulation of lipofuscin-like pigments during ageing. Ageing wild type cells did not accumulate lipofuscin-like pigments. This is quite unique feature among known biological models. It may be caused by increased concentration of alpha tocopherol (the most prominent lipophilic antioxidant) in the wild type cells. In contrast, the Ras mutant cells contained decreased levels of alpha tocopherol even in the young cells. This observation indicates that the increased free radical generation can overwhelm the endogenous antioxidant system. We have documented the involvement of nitrogen-derived free radicals in the yeast metabolism. Protein nitrotyrosine, a marker of the reactive nitrogen species, has significantly increased in the senescent Ras mutant cells. The wild type cells contained basic level of nitrotyrosine corresponding to its concentration found in non-activated mammalian macrophages.  相似文献   

15.
A mixture of ADP, ferrous ions, and hydrogen peroxide (H2O2) generates hydroxyl radicals (OH) that attack the spin trap DMPO (5,5-dimethyl-pyrollidine-N-oxide) to yield the hydroxyl free radical spin-adduct, degrade deoxyribose and benzoate with the release of thiobarbituric acid-reactive material, and hydroxylate benzoate to give fluorescent products. Inhibition studies, with scavengers of the OH radical, suggest that the behavior of iron-ADP in the reaction is complicated by the formation of ternary complexes with certain scavengers and detector molecules. In addition, iron-ADP reacting with H2O2 appears to release a substantial number of OH radicals free into solution. During the generation of OH radicals the ADP molecule was, as expected, damaged by the iron bound to it. Damage to the iron ligand in this way is not normally monitored in reaction systems that use specific detector molecules for OH radical damage. Under certain reaction conditions the ligand may be the major recipient of OH radical damage thereby leading to the incorrect assumption that the iron ligand is a poor Fenton reactant.  相似文献   

16.
The generation of free radicals by ultraviolet (UV) light accelerates skin aging, which is known as photoaging. Cutaneous iron catalyzes the generation of free radicals. We designed novel antioxidants that suppressed the iron-catalyzed free radical generation and the ensuing UV-induced damage by mimicking the binding site of iron sequestering proteins. These antioxidants, N-(2-hydroxybenzyl)amino acids, were prepared by condensation of amino acids such as glycine and L-serine with salicylaldehyde and followed by catalytic reduction. The compounds formed a 2:1 complex to iron ion. These amino acid derivatives inhibited the iron-induced hydroxyl radical generation (the Fenton reaction). The compounds also suppressed UV-induced lipid peroxidation in murine dermal fibroblast homogenates. In addition, N-(2-hydroxybenzyl)-L-serine showed protective activity against UV-induced cytotoxicity in murine dermal fibroblasts. Desferrioxamine, a strong iron sequestering compound, was effective in inhibiting the Fenton reaction and the lipid peroxidation, but it was ineffective in protecting against UV-induced cytotoxicity. The results suggest that UV-induced oxidative stress can be reduced by these amino acid derivatives.  相似文献   

17.
The role of free radicals in asbestos-induced diseases.   总被引:19,自引:0,他引:19  
Asbestos exposure causes pulmonary fibrosis and malignant neoplasms by mechanisms that remain uncertain. In this review, we explore the evidence supporting the hypothesis that free radicals and other reactive oxygen species (ROS) are an important mechanism by which asbestos mediates tissue damage. There appears to be at least two principal mechanisms by which asbestos can induce ROS production; one operates in cell-free systems and the other involves mediation by phagocytic cells. Asbestos and other synthetic mineral fibers can generate free radicals in cell-free systems containing atmospheric oxygen. In particular, the hydroxyl radical often appears to be involved, and the iron content of the fibers has an important role in the generation of this reactive radical. However, asbestos also appears to catalyze electron transfer reactions that do not require iron. Iron chelators either inhibit or augment asbestos-catalyzed generation of the hydroxyl radical and/or pathological changes, depending on the chelator and the nature of the asbestos sample used. The second principal mechanism for asbestos-induced ROS generation involves the activation of phagocytic cells. A variety of mineral fibers have been shown to augment the release of reactive oxygen intermediates from phagocytic cells such as neutrophils and alveolar macrophages. The molecular mechanisms involved are unclear but may involve incomplete phagocytosis with subsequent oxidant release, stimulation of the phospholipase C pathway, and/or IgG-fragment receptor activation. Reactive oxygen species are important mediators of asbestos-induced toxicity to a number of pulmonary cells including alveolar macrophages, epithelial cells, mesothelial cells, and endothelial cells. Reactive oxygen species may contribute to the well-known synergistic effects of asbestos and cigarette smoke on the lung, and the reasons for this synergy are discussed. We conclude that there is strong evidence supporting the premise that reactive oxygen species and/or free radicals contribute to asbestos-induced and cigarette smoke/asbestos-induced lung injury and that strategies aimed at reducing the oxidant stress on pulmonary cells may attenuate the deleterious effects of asbestos.  相似文献   

18.
《Free radical research》2013,47(1):751-757
The prevention of cancer by agents in our diet has led to the concept that oxygen radicals are a necessary component of a variety of human cancers including breast, colon and prostatic cancer. These cancers are putatively promoted by estradiol, bile acids and androgens. Epidemiological studies have shown that these cancers are suppressed in vegetarian populations. Vegetable components that may be responsible for this cancer prevention are Vitamin A, retinoids and protease inhibitors (PIS). These agents have been shown to suppress the formation of hydrogen peroxide in promoter-induced neutrophils. They also have been shown to block two-stage carcinogenesis and breast cancer when fed to animals. PIS also suppress experimentally-induced colon cancer and spontaneous liver cancer. Moreover, a new series of cancer-preventive agents, Sarcophytols (isolated by Fujiki and co-workers), are capable of suppressing two-stage carcinogenesis, breast and colon cancers in rodents when given in low concentrations. Sarcophytols were also active suppressors of H2O2 formation of 12-O-tetradecanoyl-phorbol-13-acetate (TPA)-induced neutrophils. These observations point to an essential role of oxygen radicals in carcinogenesis. Suppression of the oxygen radical response of neutrophils in relation to cancer preventive agents is a facile assay of these important substances. The mechanism of action of oxygen radicals in promoting carcinogenesis is a multiple one. including: (1) activation of oncogenes, (2) modification of DNA bases, and (3) formation of single-strand breaks leading to poly(ADP)ribose polymerase activation.  相似文献   

19.
There is evidence that the risk for developing large bowel cancer is dependent on dietary practice. The “western” diet, high in meats, proteins, fats and refined carbohydrates, and low in fiber, has been causally related to this disease. Diet is known to affect microflora, bile acids, neutral sterols and bacterial enzyme activities in the bowel. These changes may result in the production of carcinogens/ cocarcinogens within the large bowel (in situ). Current evidence suggests that nitrosamines and secondary bile acids and/or cholesterol metabolites may be the carcinogens and cocarcinogens respectively. Although the population of the United States is considered at high risk for developing large bowel cancer, the South-East as well as southern California, Arizona and Florida residents are interesting exceptions. The incidence of large bowel cancer is two-fold lower in these regions, in spite of many residents having previously lived in the higher risk north-eastern and mid-western states. Preliminary studies of dietary practices (meat consumption and dietary fiber) did not find differences which would account for the low risk regions. Our hypothesis is that citrus fruit consumption is the prime factor which can account for these low risk regions. Consumption of citrus fruits may prevent in situ production of fecal nitrosamines, secondary bile acids, and cholesterol metabolites. It has also been reported that ascorbate induces regression of preneoplastic bowel polyps. We suggest that polyp regression is the result of a cellular response in which ascorbate increases cyclic adenosine monophosphate, and the result is biochemical differentiation with an enhanced extrusion of aberrant polyp cells. Florida, which has a large immigrating population from the high risk north-eastern United States, provides an excellent model for metabolic-epidemiological studies of an area at low risk for colon cancer.  相似文献   

20.
Molecule of fullerene, having a spherical or ellipsoidal shape, is made of rings consisting of five or six carbon atoms, combined with conjugated pi bonds. Delocalization of pi electrons in the molecule of fullerene makes it easy to scavenge free radicals. But, despite being the effective antioxidants and radical scavengers fullerenes may be prooxidants by reactive oxygen species generation. Mammalian cells consist mainly of water (about 70%). Thus, the radical and non-radical products of water radiolysis are the basic sources of radiation damage to biomolecules. Reactive oxygen species, such as hydroxyl (HO*) and superoxide (O2-*) radicals and hydrogen peroxide (H2O2), are responsible for radiation-induced damage in aerated systems. Free radical mechanism of radiation damage suggests that scavengers of free radicals should protect cellular structures against damage. Electron donor compounds should also exhibit protective properties towards oxidized functional groups by reducing them. However, the electron transfer from fullerene to oxygen may generate superoxide radical. The shape of fullerenes allows them to act as carriers of radioactive atoms of isotopes used in the therapy and medical diagnostics. Fullerenes and their derivatives due to its properties are new promising chemicals for application in radiobiology. Fullerenes may be radioprotectors, radiosensitizer or auxiliary compounds in diagnostic imaging. What they are depends on the experimental system used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号