首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Stable isotope fractionation was studied during the degradation of m-xylene, o-xylene, m-cresol, and p-cresol with two pure cultures of sulfate-reducing bacteria. Degradation of all four compounds is initiated by a fumarate addition reaction by a glycyl radical enzyme, analogous to the well-studied benzylsuccinate synthase reaction in toluene degradation. The extent of stable carbon isotope fractionation caused by these radical-type reactions was between enrichment factors () of −1.5 and −3.9‰, which is in the same order of magnitude as data provided before for anaerobic toluene degradation. Based on our results, an analysis of isotope fractionation should be applicable for the evaluation of in situ bioremediation of all contaminants degraded by glycyl radical enzyme mechanisms that are smaller than 14 carbon atoms. In order to compare carbon isotope fractionations upon the degradation of various substrates whose numbers of carbon atoms differ, intrinsic (intrinsic) were calculated. A comparison of intrinsic at the single carbon atoms of the molecule where the benzylsuccinate synthase reaction took place with compound-specific elucidated that both varied on average to the same extent. Despite variations during the degradation of different substrates, the range of found for glycyl radical reactions was reasonably narrow to propose that rough estimates of biodegradation in situ might be given by using an average if no fractionation factor is available for single compounds.  相似文献   

2.
Primary features of hydrogen and carbon isotope fractionation during toluene degradation were studied to evaluate if analysis of isotope signatures can be used as a tool to monitor biodegradation in contaminated aquifers. D/H hydrogen isotope fractionation during microbial degradation of toluene was measured by gas chromatography. Per-deuterated toluene-d8 and nonlabeled toluene were supplied in equal amounts as growth substrates, and kinetic isotope fractionation was calculated from the shift of the molar ratios of toluene-d8 and nondeuterated toluene. The D/H isotope fractionation varied slightly for sulfate-reducing strain TRM1 (slope of curve [b] = −1.219), Desulfobacterium cetonicum (b = −1.196), Thauera aromatica (b = −0.816), and Geobacter metallireducens (b = −1.004) and was greater for the aerobic bacterium Pseudomonas putida mt-2 (b = −2.667). The D/H isotope fractionation was 3 orders of magnitude greater than the 13C/12C carbon isotope fractionation reported previously. Hydrogen isotope fractionation with nonlabeled toluene was 1.7 and 6 times less than isotope fractionation with per-deuterated toluene-d8 and nonlabeled toluene for sulfate-reducing strain TRM1 (b = −0.728) and D. cetonicum (b = −0.198), respectively. Carbon and hydrogen isotope fractionation during toluene degradation by D. cetonicum remained constant over a growth temperature range of 15 to 37°C but varied slightly during degradation by P. putida mt-2, which showed maximum hydrogen isotope fractionation at 20°C (b = −4.086) and minimum fractionation at 35°C (b = −2.138). D/H isotope fractionation was observed only if the deuterium label was located at the methyl group of the toluene molecule which is the site of the initial enzymatic attack on the substrate by the bacterial strains investigated in this study. Use of ring-labeled toluene-d5 in combination with nondeuterated toluene did not lead to significant D/H isotope fractionation. The activity of the first enzyme in the anaerobic toluene degradation pathway, benzylsuccinate synthase, was measured in cell extracts of D. cetonicum with an initial activity of 3.63 mU (mg of protein)−1. The D/H isotope fractionation (b = −1.580) was 30% greater than that in growth experiments with D. cetonicum. Mass spectroscopic analysis of the product benzylsuccinate showed that H atoms abstracted from the toluene molecules by the enzyme were retained in the same molecules after the product was released. Our findings revealed that the use of deuterium-labeled toluene was appropriate for studying basic features of D/H isotope fractionation. Similar D/H fractionation factors for toluene degradation by anaerobic bacteria, the lack of significant temperature dependence, and the strong fractionation suggest that analysis of D/H fractionation can be used as a sensitive tool to assess degradation activities. Identification of the first enzyme reaction in the pathway as the major fractionating step provides a basis for linking observed isotope fractionation to biochemical reactions.  相似文献   

3.
Stable Carbon Isotope Fractionation by Sulfate-Reducing Bacteria   总被引:4,自引:1,他引:4       下载免费PDF全文
Biogeochemical transformations occurring in the anoxic zones of stratified sedimentary microbial communities can profoundly influence the isotopic and organic signatures preserved in the fossil record. Accordingly, we have determined carbon isotope discrimination that is associated with both heterotrophic and lithotrophic growth of pure cultures of sulfate-reducing bacteria (SRB). For heterotrophic-growth experiments, substrate consumption was monitored to completion. Sealed vessels containing SRB cultures were harvested at different time intervals, and δ13C values were determined for gaseous CO2, organic substrates, and products such as biomass. For three of the four SRB, carbon isotope effects between the substrates, acetate or lactate and CO2, and the cell biomass were small, ranging from 0 to 2‰. However, for Desulfotomaculum acetoxidans, the carbon incorporated into biomass was isotopically heavier than the available substrates by 8 to 9‰. SRB grown lithoautotrophically consumed less than 3% of the available CO2 and exhibited substantial discrimination (calculated as isotope fractionation factors [α]), as follows: for Desulfobacterium autotrophicum, α values ranged from 1.0100 to 1.0123; for Desulfobacter hydrogenophilus, the α value was 0.0138, and for Desulfotomaculum acetoxidans, the α value was 1.0310. Mixotrophic growth of Desulfovibrio desulfuricans on acetate and CO2 resulted in biomass with a δ13C composition intermediate to that of the substrates. The extent of fractionation depended on which enzymatic pathways were used, the direction in which the pathways operated, and the growth rate, but fractionation was not dependent on the growth phase. To the extent that environmental conditions affect the availability of organic substrates (e.g., acetate) and reducing power (e.g., H2), ecological forces can also influence carbon isotope discrimination by SRB.  相似文献   

4.
In natural environments methane is usually produced by aceticlastic and hydrogenotrophic methanogenic archaea. However, some methanogens can use C1 compounds such as methanol as the substrate. To determine the contributions of individual substrates to methane production, the stable-isotope values of the substrates and the released methane are often used. Additional information can be obtained by using selective inhibitors (e.g., methyl fluoride, a selective inhibitor of acetoclastic methanogenesis). We studied stable carbon isotope fractionation during the conversion of methanol to methane in Methanosarcina acetivorans, Methanosarcina barkeri, and Methanolobus zinderi and generally found large fractionation factors (−83‰ to −72‰). We further tested whether methyl fluoride impairs methylotrophic methanogenesis. Our experiments showed that even though a slight inhibition occurred, the carbon isotope fractionation was not affected. Therefore, the production of isotopically light methane observed in the presence of methyl fluoride may be due to the strong fractionation by methylotrophic methanogens and not only by hydrogenotrophic methanogens as previously assumed.  相似文献   

5.
The strain Burkholderia cepacia G4 aerobically mineralized trichloroethene (TCE) to CO2 over a time period of ~20 h. Three biodegradation experiments were conducted with different bacterial optical densities at 540 nm (OD540s) in order to test whether isotope fractionation was consistent. The resulting TCE degradation was 93, 83.8, and 57.2% (i.e., 7.0, 16.2, and 42.8% TCE remaining) at OD540s of 2.0, 1.1, and 0.6, respectively. ODs also correlated linearly with zero-order degradation rates (1.99, 1.11, and 0.64 μmol h−1). While initial nonequilibrium mass losses of TCE produced only minor carbon isotope shifts (expressed in per mille δ13CVPDB), they were 57.2, 39.6, and 17.0‰ between the initial and final TCE levels for the three experiments, in decreasing order of their OD540s. Despite these strong isotope shifts, we found a largely uniform isotope fractionation. The latter is expressed with a Rayleigh enrichment factor, , and was −18.2 when all experiments were grouped to a common point of 42.8% TCE remaining. Although, decreases of to −20.7 were observed near complete degradation, our enrichment factors were significantly more negative than those reported for anaerobic dehalogenation of TCE. This indicates typical isotope fractionation for specific enzymatic mechanisms that can help to differentiate between degradation pathways.  相似文献   

6.
Methyl tert-butyl ether (MTBE), an octane enhancer and a fuel oxygenate in reformulated gasoline, has received increasing public attention after it was detected as a major contaminant of water resources. Although several techniques have been developed to remediate MTBE-contaminated sites, the fate of MTBE is mainly dependent upon natural degradation processes. Compound-specific stable isotope analysis has been proposed as a tool to distinguish the loss of MTBE due to biodegradation from other physical processes. Although MTBE is highly recalcitrant, anaerobic degradation has been demonstrated under different anoxic conditions and may be an important process. To accurately assess in situ MTBE degradation through carbon isotope analysis, carbon isotope fractionation during MTBE degradation by different cultures under different electron-accepting conditions needs to be investigated. In this study, carbon isotope fractionation during MTBE degradation under sulfate-reducing and methanogenic conditions was studied in anaerobic cultures enriched from two different sediments. Significant enrichment of 13C in residual MTBE during anaerobic biotransformation was observed under both sulfate-reducing and methanogenic conditions. The isotopic enrichment factors () estimated for each enrichment were almost identical (−13.4 to −14.6; r2 = 0.89 to 0.99). A value of −14.4 ± 0.7 was obtained from regression analysis (r2 = 0.97, n = 55, 95% confidence interval), when all data from our MTBE-transforming anaerobic cultures were combined. The similar magnitude of carbon isotope fractionation in all enrichments regardless of culture or electron-accepting condition suggests that the terminal electron-accepting process may not significantly affect carbon isotope fractionation during anaerobic MTBE degradation.  相似文献   

7.
Methanosarcina barkeri was cultured on methanol, H2-CO2, and acetate, and the 13C/12C ratios of the substrates and the methane produced from them were determined. The discrimination against 13C in methane relative to substrate decreased in the order methanol > CO2 > acetate. The isotopic fractionation for methane derived from acetate was only one-third of that observed with methanol as the substrate. The data presented indicate that the last enzyme of methanogenesis, methylreductase, is not the primary site of isotopic discrimination during methanogenesis from methanol or CO2. These results also support biogeochemical interpretations that gas produced in environments in which acetate is the primary methane precursor will have higher 13C/12C ratios than those from environments where other substrates predominate.  相似文献   

8.
The δ PDB13C values have been determined for the cellular constituents and metabolic intermediates of autotrophically grown Chromatium vinosum. The isotopic composition of the HCO3- in the medium and the carbon isotopic composition of the bacterial cells change with the growth of the culture. The δ PDB13C value of the HCO3- in the media changes from an initial value of −6.6‰ to +8.1‰ after 10 days of bacterial growth and the δ PDB13C value of the bacterial cells change from −37.5‰ to −29.2‰ in the same period. The amount of carbon isotope fractionation during the synthesis of hexoses by the photoassimilation of CO2 has a range of −15.5‰ at time zero to −22.0‰ after 10 days. This range of fractionation compares to the range of carbon isotope fractionation for the synthesis of sugars from CO2 by ribulose 1,5-diphosphate carboxylase and the Calvin cycle.  相似文献   

9.
Isotope effects, studied with precision isotope ratio mass spectrometry, have been used to locate critical steps in the H metabolism of plants. By manipulating the growth conditions of versatile microalgae, the discrimination of H isotopes between water in the growth medium and the organically bonded H in carbohydrates from these microalgae was −100 to −120‰ and was regulated by both the light and the dark reactions of photosynthesis. Photosynthetic electron transport discriminated against the heavy isotope of H and formed a pool of reductant available for biosynthesis that was enriched in the light isotope. Growth in red or white light activated phosphoglyceric acid reduction and H isotope discrimination, when H was fixed into organic matter. An additional fractionation of −30 to −60‰ occurred during the biosynthesis of proteins and lipids and was associated with glycolysis. This fractionation paralleled the isotope effect seen in carbohydrate metabolism, indicating that H metabolism in photosynthesis was coupled with that in dark biosynthetic reactions via the pool of reductant, probably NADPH.  相似文献   

10.
Lemna gibba L. B3 was grown under heterotrophic, photoheterotrophic, and autotrophic conditions in water having a variety of hydrogen and oxygen isotopic compositions. The slopes of the linear regression lines between the isotopic composition of water and leaf cellulose indicated that under the three growth conditions about 40, 70, and 100% of oxygens and carbon-bound hydrogens of cellulose exchanged with those of water prior to cellulose formation. Using the equations of the linear relationships, we estimated the overall fractionation factors between water and the exchanged oxygen and carbon bound-hydrogen of cellulose. At least two very different isotope effects must determine the hydrogen isotopic composition of Lemna cellulose. One reflects the photosynthetic reduction of NADP, while the second reflects exchange reactions that occur subsequent to NADP reduction. Oxygen isotopic composition of cellulose apparently is determined by a single type of exchange reaction with water. Under different growth conditions, variations in metabolic fluxes affect the hydrogen isotopic composition of cellulose by influencing the extent to which the two isotope effects mentioned above are recorded. The oxygen isotopic composition of cellulose is not affected by such changes in growth conditions.  相似文献   

11.
Carbon isotope fractionation during aerobic mineralization of 1,2-dichloroethane (1,2-DCA) by Xanthobacter autotrophicus GJ10 was investigated. A strong enrichment of 13C in residual 1,2-DCA was observed, with a mean fractionation factor α ± standard deviation of 0.968 ± 0.0013 to 0.973 ± 0.0015. In addition, a large carbon isotope fractionation between biomass and inorganic carbon occurred. A mechanistic model that links the fractionation factor α to the rate constants of the first catabolic enzyme was developed. Based on the model, it was concluded that the strong enrichment of 13C in 1,2-DCA arises because the first irreversible step of the initial enzymatic transformation of 1,2-DCA consists of an SN2 nucleophilic substitution. SN2 reactions are accompanied by a large kinetic isotope effect. The substantial carbon isotope fractionation between biomass and inorganic carbon could be explained by the kinetic isotope effect associated with the initial 1,2-DCA transformation and by the metabolic pathway of 1,2-DCA degradation. Carbon isotope fractionation during 1,2-DCA mineralization leads to 1,2-DCA, inorganic carbon, and biomass with characteristic carbon isotope compositions, which may be used to trace the process in contaminated environments.  相似文献   

12.
Laboratory-grown strains of chemoautotrophic Thiomicrospira sp. strain L-12 and Thiobacillus neapolitanus produced cell carbon that was 24.6 to 25.1 ppt (24.6 to 25.1 mg/g) lower in 13C isotope abundance than the ambient source of carbon dioxide and bicarbonate. This degree of 13C isotope depletion was comparable to that found in organic material produced in deep-sea hydrothermal-vent communities.  相似文献   

13.
14.
The potential for biodegradation of polycyclic aromatic hydrocarbons (PAHs) at low temperature and under anaerobic conditions is not well understood, but such biodegradation would be very useful for remediation of polluted sites. Biodegradation of a mixture of 11 different PAHs with two to five aromatic rings, each at a concentration of 10 μg/ml, was studied in enrichment cultures inoculated with samples of four northern soils. Under aerobic conditions, low temperature severely limited PAH biodegradation. After 90 days, aerobic cultures at 20°C removed 52 to 88% of the PAHs. The most extensive PAH degradation under aerobic conditions at 7°C, 53% removal, occurred in a culture from creosote-contaminated soil. Low temperature did not substantially limit PAH biodegradation under nitrate-reducing conditions. Under nitrate-reducing conditions, naphthalene, 2-methylnaphthalene, fluorene, and phenanthrene were degraded. The most extensive PAH degradation under nitrate-reducing conditions at 7°C, 39% removal, occurred in a culture from fuel-contaminated Arctic soil. In separate transfer cultures from the above Arctic soil, incubated anaerobically at 7°C, removal of 2-methylnaphthalene and fluorene was stoichiometrically coupled to nitrate removal. Ribosomal intergenic spacer analysis suggested that enrichment resulted in a few predominant bacterial populations, including members of the genera Acidovorax, Bordetella, Pseudomonas, Sphingomonas, and Variovorax. Predominant populations from different soils often included phylotypes with nearly identical partial 16S rRNA gene sequences (i.e., same genus) but never included phylotypes with identical ribosomal intergenic spacers (i.e., different species or subspecies). The composition of the enriched communities appeared to be more affected by presence of oxygen, than by temperature or source of the inoculum.  相似文献   

15.
芳香烃龙胆酸降解途径蛋白质组学的研究   总被引:4,自引:0,他引:4  
芳香烃是一类重要的环境污染物,微生物降解是其主要的处理方法。研究显示降解过程中产生保守型和诱导型的各一组同工酶。目前,仅有保守型的龙胆酸加双氧酶(GDOI)及其下游片段被克隆。产碱假单胞菌NCIB9867(P25X)的突变株-SNZ28 GDOI被打断,在龙胆酸诱导的情况下,该突变株仍能检测到龙胆酸加双氧酶活性。采用二维蛋白电泳分析突变株SNZ28在有和没有龙胆酸诱导条件下的蛋白质表达差异。电泳结果显示了两者存在有15个蛋白点的差异。通过MALDI-TOF和Q—TOF分析,其中的12个蛋白质点与数据库中已知多肽片段有同源性。其中,P4点与青枯菌(Ralstonia species)龙胆酸1,2加双氧酶同源。该结果在蛋白质组学上证实了GDOII的存在。  相似文献   

16.
The isotope enrichment factors () in Methanosaeta concilii and in a lake sediment, where acetate was consumed only by Methanosaeta spp., were clearly less negative than the usually observed for Methanosarcina spp. The fraction of methane produced from acetate in the sediment, as determined by using stable isotope signatures, was 10 to 15% lower when the appropriate of Methanosaeta spp. was used.  相似文献   

17.
Mangrove sediment is susceptible to anthropogenic pollutants, including polycyclic aromatic hydrocarbons (PAHs). However, the effects of PAHs on the bacterial diversity in mangrove sediment have been rarely studied. In the present study, the effects of three types of PAHs (Naphthalene, Fluorene, and Pyrene) at three doses on sediment microbial populations were investigated by using denaturing gradient gel electrophoresis (DGGE). After 7 and 24 days of incubation of the three types of PAHs, markedly different patterns were observed in the bacterial communities. Overall, the diversity of bacterial community was suppressed before 7 days but was promoted after 24 days. Multidimensional scaling analysis suggested that the composition of bacterial communities after 7 days was distinctly distant from that after 24 days. Also despite a slight shift of bacterial abundance, the bacterial communities were relatively steady in these sediments after exposure to PAHs. In addition, DGGE suggested that the applications of three PAHs (especially PYR) had considerable effects on bacterial communities. For phylogenetic analysis, bacteria species belonging to Proteobacteria (α-, β-, and γ-), Actinobacteria, Chloroflexi, Bacteroidetes, and Planctomycetes were changed dramatically after treatment with PAHs. These results suggest that PAHs play key roles in the change of bacterial community, which may be important for understanding the relationship between PAHs and sediment microbial ecology.  相似文献   

18.
Bacterial community dynamics and biodegradation processes were examined in a highly creosote-contaminated soil undergoing a range of laboratory-based bioremediation treatments. The dynamics of the eubacterial community, the number of heterotrophs and polycyclic aromatic hydrocarbon (PAH) degraders, and the total petroleum hydrocarbon (TPH) and PAH concentrations were monitored during the bioremediation process. TPH and PAHs were significantly degraded in all treatments (72 to 79% and 83 to 87%, respectively), and the biodegradation values were higher when nutrients were not added, especially for benzo(a)anthracene and chrysene. The moisture content and aeration were determined to be the key factors associated with PAH bioremediation. Neither biosurfactant addition, bioaugmentation, nor ferric octate addition led to differences in PAH or TPH biodegradation compared to biodegradation with nutrient treatment. All treatments resulted in a high first-order degradation rate during the first 45 days, which was markedly reduced after 90 days. A sharp increase in the size of the heterotrophic and PAH-degrading microbial populations was observed, which coincided with the highest rates of TPH and PAH biodegradation. At the end of the incubation period, PAH degraders were more prevalent in samples to which nutrients had not been added. Denaturing gradient gel electrophoresis analysis and principal-component analysis confirmed that there was a remarkable shift in the composition of the bacterial community due to both the biodegradation process and the addition of nutrients. At early stages of biodegradation, the α-Proteobacteria group (genera Sphingomonas and Azospirillum) was the dominant group in all treatments. At later stages, the γ-Proteobacteria group (genus Xanthomonas), the α-Proteobacteria group (genus Sphingomonas), and the Cytophaga-Flexibacter-Bacteroides group (Bacteroidetes) were the dominant groups in the nonnutrient treatment, while the γ-Proteobacteria group (genus Xathomonas), the β-Proteobacteria group (genera Alcaligenes and Achromobacter), and the α-Proteobacteria group (genus Sphingomonas) were the dominant groups in the nutrient treatment. This study shows that specific bacterial phylotypes are associated both with different phases of PAH degradation and with nutrient addition in a preadapted PAH-contaminated soil. Our findings also suggest that there are complex interactions between bacterial species and medium conditions that influence the biodegradation capacity of the microbial communities involved in bioremediation processes.  相似文献   

19.
Four C3 plants and a C4 plant were grown from seeds at four levels (30, 45, 60, and 75 %) of relative humidity. All plants were subjected to a 16 h day, at 500 μE/m2.s?1 photon flux density. Mature leaves were analyzed for their carbon isotopic composition. Isotope fractionation decreased by up to 3 ‰ with decreasing relative humidity in all C3 plants, while the opposite trend was observed in the C4 plant. The observed shifts in both C3 and C4 plants are attributed to decreased stomatal conductance at low relative humidity, resulting in a smaller Pi.  相似文献   

20.
Photosynthetic Fractionation of the Stable Isotopes of Oxygen and Carbon   总被引:10,自引:2,他引:10  
Isotope discrimination during photosynthetic exchange of O2 and CO2 was measured using enzyme, thylakoid, and whole cell preparations. Evolved oxygen from isolated spinach thylakoids was isotopically identical (within analytical error) to its source water. Similar results were obtained with Anacystis nidulans Richter and Phaeodactylum tricornutum Bohlin cultures purged with helium. For consumptive reactions, discrimination ([delta], where 1 + [delta]/1000 equals the isotope effect, k16/k18 or k12/k13) was determined by analysis of residual substrate (O2 or CO2). The [delta] for the Mehler reaction, mediated by ferredoxin or methylviologen, was 15.3[per mille (thousand) sign]. Oxygen isotope discrimination during oxygenation of ribulose-1,5-bisphosphate (RuBP) catalyzed by RuBP carboxylase/oxygenase (Rubisco) was 21.3[per mille (thousand) sign] and independent of enzyme source, unlike carbon isotope discrimination: 30.3[per mille (thousand) sign] for spinach enzyme and 19.6 to 23[per mille (thousand) sign] for Rhodospirillum rubrum and A. nidulans enzymes, depending on reaction conditions. The [delta] for O2 consumption catalyzed by glycolate oxidase was 22.7[per mille (thousand) sign]. The expected overall [delta] for photorespiration is about 21.7[per mille (thousand) sign]. Consistent with this, when Asparagus sprengeri Regel mesophyll cells approached the compensation point within a sealed vessel, the [delta]18O of dissolved O2 came to a steady-state value of about 21.5[per mille (thousand) sign] relative to the source water. The results provide improved estimates of discrimination factors in several reactions prominent in the global O cycle and indicate that photorespiration plays a significant part in determining the isotopic composition of atmospheric oxygen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号