首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的:研究氨磷汀对体外培养的神经元样细胞的缺血再灌注损伤的保护作用,为其最终用于临床脑缺血的治疗打下基础。方法:体外培养的PC12细胞氧糖剥夺4h后复氧复糖,给予不同浓度的氨磷汀处理,20h后镜下观察细胞形态学变化,用MTT和LDH检测细胞活力和损伤情况,免疫荧光染色观察凋亡细胞,流式细胞仪计数凋亡细胞的比例。结果:高浓度氨磷汀对正常PC12细胞活力有抑制作用(P〈0.05),而低浓度则无。氨磷汀可以提高缺血再灌注损伤PC12细胞活力(P〈0.05),减少LDH释放(P〈0.05),保护细胞正常形态,抑制细胞凋亡(P〈0.05)。结论:氨磷汀对氧糖剥夺引起的神经元样细胞的缺血再灌注损伤具有保护作用。  相似文献   

2.
目的:研究氨磷汀对体外培养的神经元样细胞的缺血再灌注损伤的保护作用,为其最终用于临床脑缺血的治疗打下基础。方法:体外培养的PC12细胞氧糖剥夺4h后复氧复糖,给予不同浓度的氨磷汀处理,20h后镜下观察细胞形态学变化,用MTT和LDH检测细胞活力和损伤情况,免疫荧光染色观察凋亡细胞,流式细胞仪计数凋亡细胞的比例。结果:高浓度氨磷汀对正常PC12细胞活力有抑制作用(P<0.05),而低浓度则无。氨磷汀可以提高缺血再灌注损伤PC12细胞活力(P<0.05),减少LDH释放(P<0.05),保护细胞正常形态,抑制细胞凋亡(P<0.05)。结论:氨磷汀对氧糖剥夺引起的神经元样细胞的缺血再灌注损伤具有保护作用。  相似文献   

3.
Shi  Yuanyuan  Han  Lijian  Zhang  Xianxian  Xie  Lili  Pan  Pinglei  Chen  Fei 《Neurochemical research》2022,47(10):2992-3002

To clarify the potential role of selenium (Se) on cerebral ischemia/reperfusion (I/R) injury, we utilized mouse middle cerebral artery occlusion (MCAO) followed by reperfusion as an animal model and oxygen–glucose deprivation and reoxygenation (OGD/R) to treat N2a cells as a cell model, respectively. MCAO model was established in mice and then divided into different groups with or without Se treatment. TTC staining was used to observe whether the cerebral I/R modeling was successful, and the apoptosis level was determined by TUNEL staining. The expression of GPx-4 and p22phox was assessed by western blot. In vitro experiments, the OGD/R induced oxidative stress in N2a cells was assessed by levels of GSH/GSSG, malondialdehyde, superoxide dismutase and iron content, respectively. QRT-PCR was used to detect the mRNA levels of Cox-2, Fth1, Mfn1 and mtDNA in N2a cells. JC-1 staining and flow cytometry was performed to detect the mitochondrial membrane potential. Se treatment alleviated cerebral I/R injury and improved the survival rate of mice. Additionally, Se treatment apparently attenuated oxidative stress and inhibited iron accumulation in MCAO model mice and OGD/R model of N2a cells. In terms of its mechanism, Se could up-regulate Mfn1 expression to alleviate oxidative stress and ferroptosis by promoting mitochondrial fusion in vivo and vitro. These findings suggest that Se may have great potential in alleviating cerebral I/R injury.

  相似文献   

4.
摘要 目的:通过体外细胞培养探讨miR-1298对缺血缺氧性神经损伤的调节作用。方法:首先通过细胞活性检测和乳酸脱氢酶(LDH)细胞毒性法确定大鼠PC-12细胞糖氧剥夺/复氧(OGD/R)的造模效果,同时采用实时荧光定量PCR(RT-qPCR)检测细胞miR-1298的表达差异。体外转染miR-1298mimic、mimic NC、miR-1298 inhibitor和inhibitor NC至大鼠PC-12细胞系,检测mimic、mimic NC、inhibitor、inhibitor NC的转染效率。经过OGD/R处理后将细胞分为Control组、OGD/R组、mimic组、mimicNC组、inhibitor组和inhibitorNC组。流式细胞术检测各组PC-12细胞凋亡的情况,免疫印迹试验(Western blot)检测各组PC-12细胞凋亡相关蛋白B淋巴细胞瘤-2基因(BCL-2)和Bcl-2相关的x基因(Bax)表达的情况。结果:PC12细胞经过OGD/R处理后,其细胞存活率与Control组比明显下降且LDH漏出率明显上升(均P<0.05);模型细胞中miR-1298相对表达量明显低于Control组(P<0.05)。转染24小时后mimic组细胞中miR-1298的相对表达量明显高于mimicNC组(P<0.05);mimic组细胞凋亡率低于mimicNC组,而inhibitor组细胞凋亡率高于inhibitor NC组(均P<0.05);mimic组的BCL-2表达量较mimicNC组升高,而BAX表达量下降,inhibitor组与inhibitorNC组相比,BCL-2表达量下降,而BAX表达量上升,差异均有统计学意义(均P<0.05)。结论:miR-1298通过抑制细胞凋亡减轻PC-12细胞OGD/R的损伤。  相似文献   

5.
Hydroxysafflor yellow A (HSYA) was reported neuroprotective under several ischemic models in vivo. In this study, the direct effect of HSYA against oxygen–glucose deprivation (OGD) inducing acute neuronal injury and the underling mechanisms in vitro were investigated. Four-hour oxygen and glucose deprivation (OGD) followed by 20 h reperfusion (adding back oxygen and glucose, OGD-R) was used to induce in vitro ischemia reperfusion injury in differentiated rat pheochromocytoma PC12 cells. HSYA (1, 10, and 100 μmol/l) was added to the cultures 30 min prior to the ischemic insult and was present during OGD and reoxygenation phases. The survival rate of PC12 cells was detected by MTT assay. The contents of malondialdehyde (MDA), superoxide dismutase (SOD) activity were elevated by biochemical method. Hoechst 33258 staining and flow cytometric analysis were used to detect apoptosis; western blotting was used to detect the expression of Bcl-2, Bax, and Cytochrome C protein. The activity of caspase-3 was assessed by colorimetry. HSYA concentration-dependently attenuated neuronal damage with characteristics of increasing injured neuronal absorbance of MTT, decreasing cell apoptosis, and antagonizing decreases in SOD activity and increase in MDA level induced by OGD-R. Moreover, the down-regulation of Bcl-2, up-regulation of Bax and the release of mitochondrial cytochrome c to cytosol and the consequent activation of caspase-3 were reversed by HSYA in a dose-dependent manner. These results suggest that apoptosis is an important characteristic of OGD-R-induced PC 12 death and that treatment of PC12 cells with HSYA can block OGD-R-induced apoptosis through suppression of intracellular oxidative stress and mitochondria dependent caspase cascade.  相似文献   

6.
The neuropeptide orexin-A (OXA) has a neuroprotective effect, acting as an anti-apoptotic factor in response to multiple stimuli. Apoptosis induced by endoplasmic reticulum stress (ERS) underlies oxygen-glucose deprivation and reoxygenation (OGD/R)-induced cell damage, an in vitro model of ischemia/reperfusion injury. However, that OXA inhibits ERS-induced apoptosis in the OGD/R model has not been reported. In the present study, we investigated the neuroprotective effect of OXA (0.1 μM) on OGD/R-induced damage in the human neuroblastoma cell line SH-SY5Y. After OXA treatment following 4 h oxygen-glucose deprivation (OGD) and then 4 h reoxygenation (R), cell morphology, viability, and apoptosis were analyzed by histology, Cell Counting Kit-8 assay, and flow cytometry, respectively. Western blotting was used to measure expression levels of ERS- and apoptosis-related proteins. To determine signaling pathways involved in OXA-mediated neuroprotection, the Gi pathway inhibitor pertussis toxin (PTX; 100 ng/mL) and PI3K inhibitor LY294002 (LY; 10 μM) were added. In addition, in order to prove the specificity of these characteristics, the OXA antagonist Suvorexant (DORA; Ki of 0.55 nM and 0.35 nM for OX1R and OX2R) was used for intervention. Our results showed that OGD/R induced cell damage, manifested as morphological changes and a significant decrease in viability. Furthermore, Western blotting detected an increase in ERS-related proteins GRP78, p-IRE1α, p-JNK, and Cleaved caspase-12, as well as apoptosis-related proteins Cleaved caspase-3 and Bax, and a decrease in the anti-apoptosis factor Bcl-2. OXA intervention alleviated the degree of cellular damage, and protein expression was also reversed. In addition, the protective effect of OXA was reduced by adding PTX and LY. Meanwhile, after the use of DORA, changes in the expression of related proteins were detected, and it was found that the protective effect of OXA was weakened. Collectively, our results indicate that OXA has a neuroprotective effect on OGD/R-induced cell damage by inhibiting ERS-induced apoptosis through the combined action of Gi and PI3K signaling pathways. These findings help to clarify the mechanism underlying the neuroprotective action of OXA, which should aid the development of further candidate drugs, and provide a new therapeutic direction for the treatment of ischemic stroke.  相似文献   

7.
Cerebral ischemia/reperfusion (I/R) typically occurs after mechanical thrombectomy to treat ischemic stroke, generation of reactive oxygen species (ROS) after reperfusion may result in neuronal insult, ultimately leading to disability and death. Regulated in development and DNA damage responses 1 (REDD1) is a conserved stress response protein under various pathogenic conditions. Recent research confirms the controversial role of REDD1 in injury processes. Nevertheless, the role of REDD1 in cerebral I/R remains poorly defined. In the current study, increased expression of REDD1 was observed in neurons exposed to simulated I/R via oxygen glucose deprivation/reoxygenation (OGD/R) treatment. Knockdown of REDD1 enhanced OGD/R-inhibited cell viability, but suppressed lactate dehydrogenase (LDH) release in neurons upon OGD/R. Simultaneously, suppression of REDD1 also antagonized OGD/R-evoked cell apoptosis, Bax expression, and caspase-3 activity. Intriguingly, REDD1 depression abrogated neuronal oxidative stress under OGD/R condition by suppressing ROS, MDA generation, and increasing antioxidant SOD levels. Further mechanism analysis corroborated the excessive activation of autophagy in neurons upon OGD/R with increased expression of autophagy-related LC3 and Beclin-1, but decreased autophagy substrate p62 expression. Notably, REDD1 inhibition reversed OGD/R-triggered excessive neuronal autophagy. More importantly, depression of REDD1 also elevated the expression of p-mTOR. Preconditioning with mTOR inhibitor rapamycin engendered not only a reduction in mTOR activation, but also a reactivation of autophagy in REDD1 knockdown-neurons upon OGD/R. In addition, blocking the mTOR pathway muted the protective roles of REDD1 inhibition against OGD/R-induced neuron injury and oxidative stress. Together these data suggested that REDD1 may regulate I/R-induced oxidative stress injury in neurons by mediating mTOR-autophagy signaling, supporting a promising therapeutic strategy against brain ischemic diseases.  相似文献   

8.
Stroke is one of the leading causes of death in the world, but its underlying mechanisms remain unclear. Both conventional protein kinase C (cPKC)γ and ubiquitin C‐terminal hydrolase L1 (UCHL1) are neuron‐specific proteins. In the models of 1‐hr middle cerebral artery occlusion (MCAO)/24‐hr reperfusion in mice and 1‐hr oxygen–glucose deprivation (OGD)/24‐hr reoxygenation in cortical neurons, we found that cPKCγ gene knockout remarkably aggravated ischaemic injuries and simultaneously increased the levels of cleaved (Cl)‐caspase‐3 and LC3‐I proteolysis product LC3‐II, and the ratio of TUNEL‐positive cells to total neurons. Moreover, cPKCγ gene knockout could increase UCHL1 protein expression via elevating its mRNA level regulated by the nuclear factor κB inhibitor alpha (IκB‐α)/nuclear factor κB (NF‐κB) pathway in cortical neurons. Both inhibitor and shRNA of UCHL1 significantly reduced the ratio of LC3‐II/total LC3, which contributed to neuronal survival after ischaemic stroke, but did not alter the level of Cl‐caspase‐3. In addition, UCHL1 shRNA reversed the effect of cPKCγ on the phosphorylation levels of mTOR and ERK rather than that of AMPK and GSK‐3β. In conclusion, our results suggest that cPKCγ activation alleviates ischaemic injuries of mice and cortical neurons through inhibiting UCHL1 expression, which may negatively regulate autophagy through ERK‐mTOR pathway.  相似文献   

9.
Nicotinamide (vitamin B3) reduces the infarct volume following focal cerebral ischemia in rats; however, its mechanism of action has not been reported. After cerebral ischemia and/or reperfusion, reactive oxygen species (ROS) and reactive nitrogen species may be generated by inflammatory cells through several cellular pathways, which can lead to intracellular calcium influx and cell damage. Therefore, we investigated the mechanisms of action of nicotinamide in neuroprotection under conditions of hypoxia/reoxygenation. Results showed that nicotinamide significantly protected rat primary cortical cells from hypoxia by reducing lactate dehydrogenase release with 1 h of oxygen-glucose deprivation (OGD) stress. ROS production and calcium influx in neuronal cells during OGD were dose-dependently diminished by up to 10 mM nicotinamide (p<0.01). This effect was further examined with OGD/reoxygenation (H/R). Cells were stained with the fluorescent dye 4,6-diamidino-2-phenylindole (DAPI) or antibodies against anti-microtubule-associated protein-2 and cleaved caspase-3. Apoptotic cells were studied using Western blotting of cytochrome c and cleaved caspase-3. Results showed that vitamin B3 reduced cell injury, caspase-3 cleavage and nuclear condensation (DAPI staining) in neuronal cells under H/R. In addition, nicotinamide diminished c-fos andzif268 immediate-early gene expressions following OGD. Taken together, these results indicate that the neuroprotective effect of nicotinamide might occur through these mechanisms in this in vitro ischemia/reperfusion model.  相似文献   

10.
Fordel E  Thijs L  Martinet W  Schrijvers D  Moens L  Dewilde S 《Gene》2007,398(1-2):114-122
Several studies support the hypothesis that neuroglobin and cytoglobin play a protective role against cell death when cellular oxygen supply is critical. Although the underlying molecular mechanisms are unknown, previous reports suggest that this protection can be realised by the fact that they act as ROS scavengers. In this study, expression of neuroglobin and cytoglobin was evaluated in a human neuroblastoma cell line (SH-SY5Y) under conditions of anoxia or oxygen and glucose deprivation (OGD). The cells could survive prolonged anoxia without significant loss of viability. They became anoxia sensitive when deprived of glucose. OGD induced significant cell death after 16 h resulting in 54% dead cells after 32 h. Necrosis was the main process involved in OGD-induced cell death. After reoxygenation, apoptotic neurons became more abundant. Real-time quantitative PCR and Western blotting revealed that neuroglobin and cytoglobin were upregulated, the former under OGD and the latter under anoxic conditions. Under OGD, cell survival was significantly reduced after inhibiting cytoglobin expression by transfection with antisense ODN. Moreover, cell survival was significantly enhanced by neuroglobin or cytoglobin overexpression. When neuroglobin or cytoglobin protein expression increased or decreased, the H(2)O(2) level was found to be lower or higher, respectively. We conclude that neuroglobin or cytoglobin act as ROS scavengers under ischemic conditions.  相似文献   

11.
Accumulating evidence has reported that microRNA‐144‐3p (miR‐144‐3p) is highly related to oxidative stress and apoptosis. However, little is known regarding its role in cerebral ischemia/reperfusion‐induced neuronal injury. Herein, our results showed that miR‐144‐3p expression was significantly downregulated in neurons following oxygen–glucose deprivation and reoxygenation (OGD/R) treatment. Overexpression of miR‐144‐3p markedly reduced cell viability, promoted cell apoptosis, and increased oxidative stress in neurons with OGD/R treatment, whereas downregulation of miR‐144‐3p protected neurons against OGD/R‐induced injury. Brahma‐related gene 1 (Brg1) was identified as a potential target gene of miR‐144‐3p. Moreover, downregulation of miR‐144‐3p promoted the nuclear translocation of nuclear factor erythroid 2‐related factor 2 (Nrf2) and increased antioxidant response element (ARE) activity. However, knockdown of Brg1 significantly abrogated the neuroprotective effects of miR‐144‐3p downregulation. Overall, our results suggest that miR‐144‐3p contributes to OGD/R‐induced neuronal injury in vitro through negatively regulating Brg1/Nrf2/ARE signaling.  相似文献   

12.
ABSTRACT

MiR-1306-5p is involved in the progression of acute heart failure, but its role in ischemic stroke remains unclear. Here, SH-SY5Y cells were exposed to oxygen–glucose deprivation (OGD) for 4, 8, and 12 h, respectively, and then reoxygenation for 12 h to construct OGD/R induced cell injury model. Cell viability, cell death, and cell apoptosis were assessed with CCK-8 assay, LDH assay, ?ow cytometry, and caspase-3 activity assay. The target gene of miR-1306-5p was confirmed by luciferase reporter assay. We found miR-1306-5p expression was significantly down-regulated in OGD/R-induced SH-SY5Y cell model. Moreover, miR-1306-5p protected SH-SY5Y cell against OGD/R-induced injury. Mechanistically, Bcl2-interacting killer (BIK) was the direct target gene of miR-1306-5p. Furthermore, BIK knockdown mimicked, while overexpression reversed the protective effects of miR-1306-5p against OGD/R induced injury. Our findings thus provide an experimental basis miR-1306-5p targeting BIK-based therapy for cerebral I/R injury.  相似文献   

13.
14.
15.
Autophagy is usually up‐regulated to provide more ATP in response to starvation or OGD (oxygen‐glucose deprivation), but the relationship between autophagy and ATP, [Ca2+]i (intracellular free Ca2+ concentration) or MMP (mitochondrial membrane potential) during reoxygenation is not yet fully clear. The role of autophagy is unknown in PC12 cells subjected to 2 h OGD with different time points of reoxygenation. In the present study, we showed that Beclin‐1 was up‐regulated beginning at 0 h reoxygenation peaking at 24 h and lasting for 48 h. Cell viability was decreased from 0 to 48 h reoxygenation, reaching its minimum at 10 h reoxygenation. ATP was decreased from 0 to 10 h reoxygenation, reaching its minimum at 4 h reoxygenation. A significant negative correlation was observed between ATP and Beclin‐1 (r = ?0.61, P<0.05) at 0 h reoxygenation, but ATP was not significant related (r = 0.24, P>0.05) to Beclin‐1 at 24 h reoxygenation. Besides, Nimodipine, a calcium antagonist, significantly reduced [Ca2+]i and Beclin‐1, but increased MMP in OGD/R‐treated cells. At 24 h reoxygenation, Beclin‐1 expression reached its maximum, cell viability continued to increase, and ATP was higher than that before OGD. These results suggest that energy metabolism dysfunction can induce autophagy during OGD in PC12 cells. Increased [Ca2+]i and decreased MMP may induce autophagy during reoxygenation in PC12 cells. Autophagy may be a protective effect on PC12 cells treated with different time points of reoxygenation after 2 h OGD.  相似文献   

16.
Oxidative stress has been implicated in the development of cerebral ischemia/reperfusion (I/R) injury. Glaucocalyxin B (GLB), one of five ent-kauranoid diterpenoids, was reported to possess neuroprotective activity. However, the effect of GLB on oxygen-glucose-deprivation/reperfusion (OGD/R)-induced cell injury in PC-12 cells has not been explored. PC-12 cells was treated with various concentrations of GLB (0, 2.5, 5 and 10 μM), and cell viability was detected using the MTT assay. PC-12 cells were pretreated with the indicated concentration of GLB (2.5-10 μM, 2 hours pretreatment), and were maintained under OGD for 3 hours, followed by 24 hours of reoxygenation. Cell viability was assessed using the MTT assay. The levels of superoxide dismutase, malondialdehyde, and glutathione peroxidase were detected using commercially available ELISA Kits. Intracellular reactive oxygen species level was measured using the fluorescent probe 2′,7′-dichlorofluorescein diacetate. The levels of Bcl-2, Bax, p-Akt, Akt, p-mTOR, mTOR were detected using Western blot. Our results revealed that GLB significantly protected PC12 cells against OGD/R-induced cell injury. In addition, GLB efficiently inhibited oxidative stress and cell apoptosis in OGD/R-stimulated PC-12 cells. Mechanistic studies revealed that pretreatment with GLB could induce the activation of Akt/mTOR signaling pathway resulting in protection of OGD-treated PC12 cells. In conclusion, our data indicate for the first time that GLB protects against OGD/R-induced neuronal injury in PC-12 cells. The mechanism of the protective effect of GLB is partially associated with activation of the Akt/mTOR signaling pathway. Thus, GLB may be a potential agent for protection against cerebral I/R injury.  相似文献   

17.
4-苯基丁酸钠(4-phenylbutyric acid,4-PBA)是协助内质网中蛋白质转录后修饰和折叠的分子伴侣,故可减轻非折叠蛋白反应(unfolded protein response,UPR)及其介导的细胞凋亡。既往研究表明,4-PBA可以减轻脑组织的缺血性损伤,但采用原代皮层神经元构建氧糖剥夺/再灌注(oxygen glucose deprivation/reoxygenation, OGD/R)损伤模型,来研究4-PBA对神经元损伤的保护作用及其机制尚未见报道。本文采用原代培养的皮层神经元OGD/R损伤模型,同时给予4-PBA处理,探讨4-PBA对OGD/R诱导的神经元内质网应激(endoplasmic reticulum stress,ERS)的作用及其机制。分别采用MTT、LDH和Hoechst 33342染色法检测神经元存活率、细胞膜完整性和细胞凋亡情况。Western印迹检测ERS标志物葡萄糖调节蛋白78 (glucose regulated protein 78,GRP78),以及肌醇必需酶1(inositol requiring enzyme 1, IRE1)通路相关蛋白质的表达。Western印迹结果显示,在OGD/R后0~48 h,GRP78的表达较对照组明显升高。MTT、LDH漏出率和Hoechst 33342染色法检测显示,4-PBA显著改善OGD/R所导致的神经元存活率下降、LDH漏出率升高和细胞凋亡增加,且具有明显的剂量依赖性。通过Western印迹检测发现,4-PBA显著逆转OGD/R所致GRP78蛋白表达水平的上调。此外,对肌醇必需酶1通路相关蛋白质的检测显示,4-PBA下调氧糖剥夺/再灌注组神经元p IRE1和p JNK的表达,增加抗凋亡蛋白Bcl 2表达。上述研究结果表明,4-PBA在氧糖剥夺/再灌注情况下对神经元具有保护作用,该保护作用可能是通过抑制肌醇必需酶1信号通路介导的非折叠蛋白反应和内质网应激实现的。  相似文献   

18.
Myocardial ischemia/reperfusion injury (MIRI) is a clinically familiar disease, which possesses a great negative impact on human health. But, the effective treatment is still absent. MicroRNAs (miRNAs) have been testified to play a momentous role in MIRI. The purpose of the study aimed to probe the functions of miR-132 in oxygen and glucose deprivation (OGD)-evoked injury in H9c2 cells. miR-132 expression in H9c2 cells accompanied by OGD disposition was evaluated via real-time quantitative polymerase chain reaction. After miR-132 mimic and inhibitor transfections, the impacts of miR-132 on OGD-affected H9c2 cell viability, apoptosis, cell cycle, and the interrelated factors were appraised by exploiting cell counting kit-8, flow cytometry, and western blot analysis. FOXO3A expression was estimated in above-transfected cells, meanwhile, the correlation between miR-132 and FOXO3A was probed by dual-luciferase report assay. Ultimately, above mentioned cell processes were reassessed in H9c2 cells after preprocessing OGD administration and transfection with si-FOXO3A and si-NC plasmids. We got that OGD disposition obviously enhanced miR-132 expression in H9c2 cells. Overexpressed miR-132 evidently reversed OGD-evoked cell viability repression and apoptosis induction in H9c2 cells. In addition, overexpressed miR-132 mitigated OGD-evoked G0/G1 cell arrest by mediating p21, p27, and cyclin D1 expression. Repression of FOXO3A was observed in miR-132 mimic-transfected cells, which was also predicated as a direct gene of miR-132. We discovered that silenced FOXO3A alleviated OGD-evoked cell injury in H9c2 cells via facilitating cell viability, hindering apoptosis and restraining cell arrest at G0/G1 phase. In conclusion, these investigations corroborated that miR-132 exhibited the protective impacts on H9c2 cells against OGD-evoked injury via targeting FOXO3A.  相似文献   

19.
20.
宋杰  祝丽双  陈佳  陆慧琦  韩焕兴 《生物磁学》2014,(12):2255-2258
目的:探讨在不同浓度阿霉素作用下,肺癌细胞株A549存活率发生反向变化的可能机制。方法:在阿霉素作用于A549细胞24小时后,采用MTT法检测细胞存活情况的变化;用实时定量RT-PCR和蛋白印迹法测定survivin的mRNA和蛋白水平表达;免疫印迹检测p21蛋白表达水平,以及流式细胞术检测药物作用后细胞周期变化。进一步用羟基脲阻滞细胞分化于G1期,观察阿霉素对细胞的作用情况。结果:在不同浓度梯度的阿霉素作用下(由低至高),细胞存活率出现先下降后上升的反弹趋势(P〈0.01),并伴随survivin分子的高表达,同时,药物作用下细胞分化更倾向阻滞于G1期。结论:高浓度阿霉素作用下细胞分化多阻滞于G1期,并诱导出现survivin分子的高表达,从而增强了对细胞的保护作用是细胞存活率反向升高的可能原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号