首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Expression patterns of sarcoplasmic/endoplasmic-reticulum Ca(2+)-ATPase (SERCA) and inositol 1,4,5-trisphosphate receptor (IP3R) isoforms were studied in endothelial cells at the mRNA level by ratio RT-PCR technique and subsequent restriction-enzyme analysis. Three types of cells have been used in the present study: rat adrenal medulla microvascular endothelial cells (RAMEC), rat aortic endothelial cells (RAEC), and human umbilical vein endothelial cells (HUVEC). Our data show the presence of multiple SERCA and IP3R isoforms in each type of endothelial cells. Freshly isolated HUVEC were an exception in this respect since they contained only SERCA3 without SERCA2b messengers. The expression patterns changed upon cell proliferation: SERCA3 and IP3R-1 messengers decreased, while IP3R-3 increased with culturing. Upon cell differentiation, induced by culturing the cells on Matrigel, the expression pattern of the IP3R changed even further in all endothelial cell types: IP3R-1 was reduced in all three cell kinds, while IP3R-3 raised significantly in RAEC and RAMEC. In HUVEC the expression of SERCA returned, upon differentiation, to the levels observed in the freshly isolated cells. Thus, the plasticity of expression of various SERCA and IP3R isoforms shows that possibly different Ca2+ pools may play distinct roles in cell proliferation and differentiation.  相似文献   

2.
The organization of endoplasmic reticulum (ER) was examined in mouse eggs undergoing fertilization and in embryos during the first cell cycle. The ER in meiosis II (MII)-arrested mouse eggs is characterized by accumulations (clusters) that are restricted to the cortex of the vegetal hemisphere of the egg. Monitoring ER structure with DiI18 after egg activation has demonstrated that ER clusters disappear at the completion of meiosis II. The ER clusters can be maintained by inhibiting the decrease in cdk1-cyclin B activity by using the proteasome inhibitor MG132, or by microinjecting excess cyclin B. A role for cdk1-cyclin B in ER organization is further suggested by the finding that the cdk inhibitor roscovitine causes the loss of ER clusters in MII eggs. Cortical clusters are specific to meiosis as they do not return in the first mitotic division; rather, the ER aggregates around the mitotic spindle. Inositol 1,4,5-trisphosphate-induced Ca(2+) release is also regulated in a cell cycle-dependent manner where it is increased in MII and in the first mitosis. The cell cycle dependent effects on ER structure and inositol 1,4,5-trisphosphate-induced Ca(2+) release have implications for understanding meiotic and mitotic control of ER structure and inheritance, and of the mechanisms regulating mitotic Ca(2+) signaling.  相似文献   

3.
Lau KL  Kong SK  Ko WH  Kwan HY  Huang Y  Yao X 《Life sciences》2003,73(16):2019-2028
Calcium is a crucial regulator of many physiological processes such as cell growth, division, differentiation, cell death and apoptosis. In this study, we examined the effect of cGMP on agonist-induced [Ca(2+)](i) transient in isolated rat aortic endothelial cells. 100 microM ATP was applied to the cells bathed in a Ca(2+)-free physiological solution to induce a [Ca(2+)](i) transient that was caused by Ca(2+) release from intracellular stores. cGMP, which was applied after [Ca(2+)](i) reached its peak level, accelerated the falling phase of [Ca(2+)](i) transient. Pre-treatment of the cells with CPA abolished the accelerating effect of cGMP on the falling phase of [Ca(2+)](i) transient. The effect of cGMP was reversed by KT5823, a highly specific inhibitor of protein kinase G. Taken together, these data suggest that cGMP may reduce [Ca(2+)](i) level by promoting Ca(2+) uptake through sarcoplasmic/endoplasmic reticulum ATPase and that the effect of cGMP may be mediated by protein kinase G.  相似文献   

4.
5.
Crystals of sarcoplasmic reticulum Ca(2+)-ATPase   总被引:1,自引:0,他引:1  
High-resolution structures of the Ca(2+)-ATPase have over the last 5 years added a structural dimension to our understanding of the function of this integral membrane protein. The Ca(2+)-ATPase is now by far the membrane protein where the most functionally different conformations have been described in precise structural detail. Here, we review our experience from solving Ca(2+)-ATPase structures: a purification scheme involving minimum handling of the protein to preserve natural and essential lipids, a rational approach to screening for crystals based on a limited number of polyethyleneglycols and many different salts, improving crystal quality using additives, collecting the data and finally solving the structures. We argue that certain of the lessons learned in the present study are very likely to be useful for crystallisation of eukaryotic membrane proteins in general.  相似文献   

6.
Huh YH  Jeon SH  Yoo JA  Park SY  Yoo SH 《Biochemistry》2005,44(16):6122-6132
We show here that expression of chromogranins in non-neuroendocrine NIH3T3 cells significantly increased the amount of IP(3)-mediated intracellular Ca(2+) mobilization in these cells, whereas suppression of them in neuroendocrine PC12 cells decreased the amount of mobilized Ca(2+). We have therefore investigated the relationship between the IP(3)-induced intracellular Ca(2+) mobilization and secretory granules. The level of IP(3)-mediated Ca(2+) release in CGA-expressing NIH3T3 cells was 40% higher than in the control cells, while that of CGB-expressing cells was 134% higher, reflecting the number of secretory granules formed. Suppression of CGA and CGB expression in PC12 cells resulted in 41 and 78% reductions in the number of secretory granules, respectively, while the extents of IP(3)-induced Ca(2+) release in these cells were reduced 40 and 69%, respectively. The newly formed secretory granules of NIH3T3 cells contained all three isoforms of the IP(3)Rs. Comparison of the concentrations of the IP(3)R isoforms expressed in the ER and nucleus of chromogranin-expressing and nonexpressing NIH3T3 cells did not show significant differences, indicating that chromogranin expression did not affect the expression of endogenous IP(3)Rs. Nonetheless, the IP(3)R concentrations in secretory granules of chromogranin-expressing NIH3T3 cells were 3.5-4.7-fold higher than those of the ER, similar to the levels found in secretory granules of neuroendocrine chromaffin cells, thus suggesting that the IP(3)Rs targeted to the newly formed secretory granules are newly induced by chromogranins without affecting the expression of intrinsic IP(3)Rs. These results strongly suggest that the extent of IP(3)-induced intracellular Ca(2+) mobilization in secretory cells is closely related to the number of secretory granules.  相似文献   

7.
8.
Different sarco/endoplasmic reticulum Ca(2+)-ATPases isoforms are found in blood platelets and in skeletal muscle. The amount of heat produced during ATP hydrolysis by vesicles derived from the endoplasmic reticulum of blood platelets was the same in the absence and presence of a transmembrane Ca(2+) gradient. Addition of platelets activating factor (PAF) to the medium promoted both a Ca(2+) efflux that was arrested by thapsigargin and an increase of the yield of heat produced during ATP hydrolysis. The calorimetric enthalpy of ATP hydrolysis (DeltaH(cal)) measured during Ca(2+) transport varied between -10 and -12 kcal/mol without PAF and between -20 and -24 kcal/mol with 4 microM PAF. Different from platelets, in skeletal muscle vesicles a thapsigargin-sensitive Ca(2+) efflux and a high heat production during ATP hydrolysis were measured without PAF and the DeltaH(cal) varied between -10 and -12 kcal/mol in the absence of Ca(2+) and between -22 up to -32 kcal/mol after formation of a transmembrane Ca(2+) gradient. PAF did not enhance the rate of thapsigargin-sensitive Ca(2+) efflux nor increase the yield of heat produced during ATP hydrolysis. These findings indicate that the platelets of Ca(2+)-ATPase isoforms are only able to convert osmotic energy into heat in the presence of PAF.  相似文献   

9.
Cytosolic Ca(2+) ([Ca(2+)](i)) oscillations may be generated by the inositol 1,4,5-trisphosphate receptor (IP(3)R) driven through cycles of activation/inactivation by local Ca(2+) feedback. Consequently, modulation of the local Ca(2+) gradients influences IP(3)R excitability as well as the duration and amplitude of the [Ca(2+)](i) oscillations. In the present work, we demonstrate that the immunosuppressant cyclosporin A (CSA) reduces the frequency of IP(3)-dependent [Ca(2+)](i) oscillations in intact hepatocytes, apparently by altering the local Ca(2+) gradients. Permeabilized cell experiments demonstrated that CSA lowers the apparent IP(3) sensitivity for Ca(2+) release from intracellular stores. These effects on IP(3)-dependent [Ca(2+)](i) signals could not be attributed to changes in calcineurin activity, altered ryanodine receptor function, or impaired Ca(2+) fluxes across the plasma membrane. However, CSA enhanced the removal of cytosolic Ca(2+) by sarco-endoplasmic reticulum Ca(2+)-ATPase (SERCA), lowering basal and inter-spike [Ca(2+)](i). In addition, CSA stimulated a stable rise in the mitochondrial membrane potential (DeltaPsi(m)), presumably by inhibiting the mitochondrial permeability transition pore, and this was associated with increased Ca(2+) uptake and retention by the mitochondria during a rise in [Ca(2+)](i). We suggest that CSA suppresses local Ca(2+) feedback by enhancing mitochondrial and endoplasmic reticulum Ca(2+) uptake, these actions of CSA underlie the lower IP(3) sensitivity found in permeabilized cells and the impaired IP(3)-dependent [Ca(2+)](i) signals in intact cells. Thus, CSA binding proteins (cyclophilins) appear to fine tune agonist-induced [Ca(2+)](i) signals, which, in turn, may adjust the output of downstream Ca(2+)-sensitive pathways.  相似文献   

10.
Inositol 1,4,5-trisphosphate (Ins (1,4,5)P3)-stimulated Ca2+ release is inhibited by low concentrations of heparin (IC50 = 4.5 micrograms/ml). GTP-stimulated Ca2+ release is unaffected at a heparin concentration of 16 micrograms/ml. Addition of heparin after Ins (1,4,5)P3 causes the rapid re-uptake of Ins (1,4,5)P3-releasable Ca2+.  相似文献   

11.
Calreticulin (CRT) is a highly conserved Ca(2+)-binding protein that resides in the lumen of the endoplasmic reticulum (ER). We overexpressed CRT in Xenopus oocytes to determine how it could modulate inositol 1,4,5-trisphosphate (InsP(3))-induced Ca(2+) influx. Under conditions where it did not affect the spatially complex elevations in free cytosolic Ca(2+) concentration ([Ca(2+)](i)) due to InsP(3)-induced Ca(2+) release, overexpressed CRT decreased by 46% the Ca(2+)-gated Cl(-) current due to Ca(2+) influx. Deletion mutants revealed that CRT requires its high capacity Ca(2+)-binding domain to reduce the elevations of [Ca(2+)](i) due to Ca(2+) influx. This functional domain was also required for CRT to attenuate the InsP(3)-induced decline in the free Ca(2+) concentration within the ER lumen ([Ca(2+)](ER)), as monitored with a "chameleon" indicator. Our data suggest that by buffering [Ca(2+)](ER) near resting levels, CRT may prevent InsP(3) from depleting the intracellular stores sufficiently to activate Ca(2+) influx.  相似文献   

12.
A robust mathematical model developed from single cell calcium (Ca(2+)) dynamics has enabled us to predict the consequences of over-expression of endoplasmic reticulum-located chaperones. Model predictions concluded that calreticulin interacts with the lumenal domain of the sarcoplasmic and endoplasmic reticulum Ca(2+)-activated ATPase (SERCA) pump, altering pump affinity for Ca(2+) (K(1/2) switches from 247 to 431 nM) and hence generating Ca(2+) oscillations. Expression of calreticulin in the ER generated an average of six transient-decline oscillations during the Ca(2+) recovery phase, upon exposure to maximal levels of the agonist ATP. In contrast, normal cells produced a single Ca(2+) transient with few or no oscillations. By conditioning the model to experimental data, parameters for generation and decay of IP(3) and SERCA pump kinetics were determined. To elucidate the possible source of the oscillatory behavior three possible oscillators, 1) IP(3), 2) IP(3)R, and 3) SERCA pump, were investigated and parameters constrained by experimental data to produce the best candidate. Each of the three oscillators generated very good fits with experimental data. However, converting a normal exponential recovery to a transient-decline oscillator predicted that the SERCA pump is the most likely candidate for calreticulin-mediated Ca(2+) release, highlighting the role of this chaperone as a signal protein within the endoplasmic reticulum.  相似文献   

13.
The Ca(2+) binding sites of the Ca(2+)-ATPase of skeletal muscle sarcoplasmic reticulum (SR) have been identified as two high-affinity sites orientated towards the cytoplasm, two sites of low affinity facing the lumen, and a transient occluded species that is isolated from both membrane surfaces. Binding and release studies, using (45)Ca(2+), have invoked models with sequential binding and release from high- and low-affinity sites in a channel-like structure. We have characterised turnover conditions in isolated SR vesicles with oxalate in a Ca(2+)-limited state, [Ca(2)](lim), where both high- and low-affinity sites are vacant in the absence of chelators (Biochim. Biophys. Acta 1418 (1999) 48-60). Thapsigargin (TG), a high-affinity specific inhibitor of the Ca(2+)-ATPase, released a fraction of total Ca(2+) at [Ca(2+)](lim) that accumulated during active transport. Maximal Ca(2+) release was at 2:1 TG/ATPase. Ionophore, A23187, and Triton X-100 released the rest of Ca(2+) resistant to TG. The amount of Ca(2+) released depended on the incubation time at [Ca(2+)](lim), being 3.0 nmol/mg at 20 s and 0.42 nmol/mg at 1000 s. Rate constants for release declined from 0. 13 to 0.03 s(-1). The rapidly released early fraction declined with time and k=0.13 min(-1). Release was not due to reversal of the pump cycle since ADP had no effect; neither was release impaired with substrates acetyl phosphate or GTP. A phase of reuptake of Ca(2+) followed release, being greater with shorter delay (up to 200 s) following active transport. Reuptake was minimal with GTP, with delays more than 300 s, and was abolished by vanadate and at higher [TG], >5 microM. Ruthenium red had no effect on efflux, indicating that ryanodine-sensitive efflux channels in terminal cisternal membranes are not involved in the Ca(2+) release mechanism. It is concluded that the Ca(2+) released by TG is from the occluded Ca(2+) fraction. The Ca(2+) occlusion sites appear to be independent of both high-affinity cytoplasmic and low-affinity lumenal sites, supporting a multisite 'in line' sequential binding mechanism for Ca(2+) transport.  相似文献   

14.
The sarcoplasmic reticulum Ca(2+)-ATPase (SERCA1a) pumps Ca(2+) and countertransport protons. Proton pathways in the Ca(2+) bound and Ca(2+)-free states are suggested based on an analysis of crystal structures to which water molecules were added. The pathways are indicated by chains of water molecules that interact favorably with the protein. In the Ca(2+) bound state Ca(2)E1, one of the proposed Ca(2+) entry paths is suggested to operate additionally or alternatively as proton pathway. In analogs of the ADP-insensitive phosphoenzyme E2P and in the Ca(2+)-free state E2, the proton path leads between transmembrane helices M5 to M8 from the lumenal side of the protein to the Ca(2+) binding residues Glu-771, Asp-800 and Glu-908. The proton path is different from suggested Ca(2+) dissociation pathways. We suggest that separate proton and Ca(2+) pathways enable rapid (partial) neutralization of the empty cation binding sites. For this reason, transient protonation of empty cation binding sites and separate pathways for different ions are advantageous for P-type ATPases in general.  相似文献   

15.
It has been suggested that the release of Ca2+ from intracellular stores by inositol 1,4,5-trisphosphate (InsP3) is modulated by the luminal Ca2+ content of the stores and that such an effect could underlie the apparent ‘quantal’ nature of InsP3-induced release. Although initial studies failed to find evidence in support of such a modulation, several subsequent reports have indicated luminal Ca2+ effects that become apparent only after a greater than 70–75% depletion of Ca2+ stores. In these studies, Ca2+ release was expressed as a percentage of an A23187-releasable pool which comprised both InsP3-sensi-tive and InsP3-insensitive components. In model calculations we have found that the presence of even a minor InsP3-insensitive component in the total Ca2+ pool significantly distorts interpretation of the data. We show that the published results can be accurately duplicated without any requirement for a shift in the true InsP3 sensitivity of Ca2+ release if either: (a) the InsP3-insensitive component does not remain a constant proportion of the total pool during depletion (i.e. depletion disproportionally affects the InsP3-sensitive component); or (b) during generation of InsP3-response curves, additional Cal 2+ is released from the InsP3-insensitive component as the InsP3-sensitive component is progressively emptied. Examination indicates that either, or both, of these conditions apply in the published reports and we conclude that the demonstrated effects of luminal Ca2+ may be artifacts.  相似文献   

16.
We have studied arginine vasopressin (AVP)-, thapsigargin- and inositol 1,4,5-trisphosphate (InsP3)-mediated Ca2+ release in renal epithelial LLC-PK1 cells. AVP-induced changes in the intracellular free calcium concentration ([Ca2+]i) were studied in indo-1 loaded single cells by confocal laser cytometry. AVP-mediated Ca2+ mobilization was also observed in the absence of extracellular Ca2+, but was completely abolished after depletion of the intracellular Ca2+ stores by 2 μM thapsigargin. Using 45Ca2+ fluxes in saponin-permeabilized cell monolayers, we have analysed how InsP3 affected the Ca2+ content of nonmitochondrial Ca2+ pools in different loading and release conditions. Less than 10% of the Ca2+ was taken up in a thapsigargin-insensitive pool when loading was performed in a medium containing 0.1 μM Ca2+. The thapsigargin-insensitive compartment amounted to 35% in the presence of 110 μM Ca2+, but Ca2+ sequestered in this pool could not be released by InsP3. The thapsigargin-sensitive Ca2+ pool, in contrast, was nearly completely InsP3 sensitive. A submaximal [InsP3], however, released only a fraction of the sequestered Ca2+. This fraction was dependent on the cytosolic as well as on the luminal [Ca2+]. The cytosolic free [Ca2+] affected the InsP3-induced Ca2+ release in a biphasic way. Maximal sensitivity toward InsP3 was found at a free cytosolic [Ca2+] between 0.1 and 0.5 μM, whereas higher cytosolic [Ca2+] decreased the InsP3 sensitivity. Other divalent cations or La3+ did not provoke similar inhibitory effects on InsP3-induced Ca2+ release. The luminal free [Ca2+] was manipulated by varying the time of incubation of Ca2+ -loaded cells in an EGTA-containing medium. Reduction of the Ca2+ content to one-third of its initial value resulted in a fivefold decrease in the InsP3 sensitivity of the Ca2+ release. © 1993 Wiley-Liss, Inc.  相似文献   

17.
We recently reported the first molecular genetic evidence that Dictyostelium Ca2+ responses to chemoattractants include a contribution from the endoplasmic reticulum (ER) – responses are enhanced in mutants lacking calreticulin or calnexin, two major Ca2+-binding proteins in the ER, even though the influx of Ca2+ into the mutants is reduced. Compared with wild-type cells, the ER in the mutants contributes at least 30–70 nM additional Ca2+ to the responses. Here we report that this additional ER contribution to the cytosolic Ca2+ signal depends upon extracellular Ca2+– it does not occur in the absence of extracellular Ca2+, increases to a maximum as the extracellular Ca2+ levels rise to 10 μM and then remains constant at extracellular Ca2+ concentrations up to at least 250 μM. These results suggest that Ca2+ influx causes the intracellular release, in the simplest scenario by a mechanism involving Ca2+-induced Ca2+ release from the ER. By way of contrast, we show that Ca2+ responses to mechanical stimulation are reduced, but still occur in the absence of extracellular Ca2+. Unlike the responses to chemoattractants, mechanoresponses thus include contributions from the ER that are independent of extracellular Ca2+.  相似文献   

18.
To study Ca(2+) fluxes between mitochondria and the endoplasmic reticulum (ER), we used "cameleon" indicators targeted to the cytosol, the ER lumen, and the mitochondrial matrix. High affinity mitochondrial probes saturated in approximately 20% of mitochondria during histamine stimulation of HeLa cells, whereas a low affinity probe reported averaged peak values of 106 +/- 5 microm, indicating that Ca(2+) transients reach high levels in a fraction of mitochondria. In concurrent ER measurements, [Ca(2+)](ER) averaged 371 +/- 21 microm at rest and decreased to 133 +/- 14 microm and 59 +/- 5 microm upon stimulation with histamine and thapsigargin, respectively, indicating that substantial ER refilling occur during agonist stimulation. A larger ER depletion was observed when mitochondrial Ca(2+) uptake was prevented by oligomycin and rotenone or when Ca(2+) efflux from mitochondria was blocked by CGP 37157, indicating that some of the Ca(2+) taken up by mitochondria is re-used for ER refilling. Accordingly, ER regions close to mitochondria released less Ca(2+) than ER regions lacking mitochondria. The ER heterogeneity was abolished by thapsigargin, oligomycin/rotenone, or CGP 37157, indicating that mitochondrial Ca(2+) uptake locally modulate ER refilling. These observations indicate that some mitochondria are very close to the sites of Ca(2+) release and recycle a substantial portion of the captured Ca(2+) back to vicinal ER domains. The distance between the two organelles thus determines both the amplitude of mitochondrial Ca(2+) signals and the filling state of neighboring ER regions.  相似文献   

19.
The inositol 1,4,5-trisphosphate receptor (InsP3R) is an integral membrane protein in the endoplasmic reticulum (ER) which functions as a ligand-gated Ca2+ release channel. InsP3-mediated Ca2+ release modulates the cytoplasmic free Ca2+ concentration ([Ca2+]i), providing a ubiquitous intracellular signal with high temporal and spatial specificity. Precise localization of the InsP3R is believed to be important for providing local [Ca2+] regulation and for ensuring efficient functional coupling between Ca2+ release sites by enabling graded recruitment of channels with increasing stimulus strength in the face of the intrinsically unstable regenerative process of Ca2+-induced Ca2+ release. Highly localized Ca2+ release has been attributed to the ability of the InsP3R channels to cluster and to be localized to discrete areas, suggesting that mechanisms may exist to restrict their movement. Here, we examined the lateral mobility of the type 3 isoform of the InsP3R (InsP3R3) in the ER membrane by performing confocal fluorescence recovery after photobleaching of an InsP3R3 with green fluorescent protein fused to its N terminus. In Chinese hamster ovary and COS-7 cells, the diffusion coefficient D was approximately 4 x 10(-10) cm2/s at room temperature, a value similar to that determined for other ER-localized integral membrane proteins, with a high fraction (approximately 75%) of channels mobile. D was modestly increased at 37 degrees C, and it as well as the mobile fraction were reversibly reduced by ATP depletion. Although disruption of the actin cytoskeleton (latrunculin) was without effect, disruption of microtubules (nocodazole) reduced D by half without affecting the mobile fraction. We conclude that the entire ER is continuous in these cells, with the large majority of InsP3R3 channels free to diffuse throughout it, at rates that are comparable with those measured for other polytopic ER integral membrane proteins. The observed InsP3R3 mobility may be higher than its intrinsic diffusional mobility because of additional ATP- and microtubule-facilitated motility of the channel.  相似文献   

20.
In cultured rat dorsal root ganglia neurons, we measured membrane currents, using the patch-clamp whole-cell technique, and the concentrations of free Ca(2+) in the cytosol ([Ca(2+)](i)) and in the lumen of the endoplasmic reticulum (ER) ([Ca(2+)](L)), using high- (Fluo-3) and low- (Mag-Fura-2) affinity Ca(2+)-sensitive fluorescent probes and video imaging. Resting [Ca(2+)](L) concentration varied between 60 and 270 microM. Activation of ryanodine receptors by caffeine triggered a rapid fall in [Ca(2+)](L) levels, which amounted to only 40--50% of the resting [Ca(2+)](L) value. Using electrophysiological depolarization, we directly demonstrate the process of Ca(2+)-induced Ca(2+) release triggered by Ca(2+) entry through voltage-gated Ca(2+) channels. The amplitude of Ca(2+) release from the ER lumen was linearly dependent on I(Ca).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号