首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Comparative sequence analysis complements experimental methods for the determination of RNA three-dimensional structure. This approach is based on the concept that different sequences within the same gene family form similar higher-order structures. The large number of rRNA sequences with sufficient variation, along with improved covariation algorithms, are providing us with the opportunity to identify new base triples in 16S rRNA. The three-dimensional conformations for one of our strongest candidates involving U121 (C124:G237) and/or U121 (U125:A236) (Escherichia coli sequence and numbering) are analyzed here with different molecular modeling tools. Molecular modeling shows that U121 interacts with C124 in the U121 (C124:G237) base triple. This arrangement maintains isomorphic structures for the three most frequent sequence motifs (approximately 93% of known bacterial and archaeal sequences), is consistent with chemical reactivity of U121 in E. coli ribosomes, and is geometrically favorable. Further, the restricted set of observed canonical (GU, AU, GC) base-pair types at positions 124:237 and 125:236 is consistent with the fact that the canonical base-pair sets (for both base pairs) that are not observed in nature prevent the formation of the 121 (124:237) base triple. The analysis described here serves as a general scheme for the prediction of specific secondary and tertiary structure base pairing where there is a network of correlated base changes.  相似文献   

2.
Alignment of the 87 available sequences of group I self-splicing introns reveals numerous instances of covariation between distant sites. Some of these covariations cannot be ascribed to historical coincidences or the known secondary structure of group I introns, and are, therefore, best explained as reflecting tertiary contacts. With the help of stereochemical modelling, we have taken advantage of these novel interactions to derive a three-dimensional model of the conserved core of group I introns. Two noteworthy features of that model are its extreme compactness and the fact that all of the most evolutionarily conserved residues happen to converge around the two helices that constitute the substrate of the core ribozyme and the site that binds the guanosine cofactor necessary for self-splicing. Specific functional implications are discussed, both with regard to the way the substrate helices are recognized by the core and possible rearrangements of the introns during the self-splicing process. Concerning potential long-range interactions, emphasis is put on the possible recognition of two consecutive purines in the minor groove of a helix by a GAAA or related terminal loop.  相似文献   

3.
We have characterized the structural organization and catalytic properties of the large nucleolar group I introns (NaSSU1) of the different Naegleria species N. jamiesoni, N. andersoni, N. italica, and N. gruberi. NaSSU1 consists of three distinct RNA domains: an open reading frame encoding a homing-type endonuclease, and a small group I ribozyme (NaGIR1) inserted into the P6 loop of a second group I ribozyme (NaGIR2). The two ribozymes have different functions in RNA splicing and processing. NaGIR1 is an unusual self-cleaving group I ribozyme responsible for intron processing at two internal sites (IPS1 and IPS2), both close to the 5' end of the open reading frame. This processing is hypothesized to lead to formation of a messenger RNA for the endonuclease. Structurally, NaGIR2 is a typical group IC1 ribozyme, catalyzing intron excision and exon ligation reactions. NaGIR2 is responsible for circularization of the excised intron, a reaction that generates full-length RNA circles of wild-type intron. Although it is only distantly related in primary sequence, NaSSU1 RNA has a predicted organization and function very similar to that of the mobile group I intron DiSSU1 of Didymium, the only other group I intron known to encode two ribozymes. We propose that these twin-ribozyme introns define a distinct category of group I introns with a conserved structural organization and function.  相似文献   

4.
W A Decatur  C Einvik  S Johansen    V M Vogt 《The EMBO journal》1995,14(18):4558-4568
DiSSU1, a mobile intron in the nuclear rRNA gene of Didymium iridis, was previously reported to contain two independent catalytic RNA elements. We have found that both catalytic elements, renamed GIR1 and GIR2, are group I ribozymes, but with differing functionality. GIR2 carries out the several reactions associated with self-splicing. GIR1 carries out a hydrolysis reaction at an internal processing site (IPS-1). These conclusions are based on the catalytic properties of RNAs transcribed in vitro. Mutation of the P7 pairing segment of GIR2 abrogated self-splicing, while mutation of P7 in GIR1 abrogated hydrolysis at the IPS-1. Much of the P2 stem and all of the associated loop could be deleted without effect on self-splicing. These results are accounted for by a secondary structure model, in which a long P2 pairing segment brings the 5' splice site to the GIR2 catalytic core. GIR1 is the smallest natural group I ribozyme yet reported and is the first example of a group I ribozyme whose presumptive biological function is hydrolysis. We hypothesize that GIR1-mediated cleavage of the excised intron RNA functions in the generation and expression of the mRNA for the intron-encoded endonuclease I-DirI.  相似文献   

5.
Previous work on group I introns has suggested that a central base triple might be more important for the first rather than the second step of self-splicing, leading to a model in which the base triple undergoes a conformational change during self-splicing. Here, we use the well-characterized L-21 ScaI ribozyme derived from the Tetrahymena group I intron to probe the effects of base-triple disruption on individual reaction steps. Consistent with previous results, reaction of a ternary complex mimicking the first chemical step in self-splicing is slowed by mutations in this base triple, whereas reaction of a ternary complex mimicking the second step of self-splicing is not. Paradoxically, mechanistic dissection of the base-triple disruption mutants indicates that active site binding is weakened uniformly for the 5'-splice site and the 5'-exon analog, mimics for the species bound in the first and second step of self-splicing. Nevertheless, the 5'-exon analog remains bound at the active site, whereas the 5'-splice site analog does not. This differential effect arises despite the uniform destabilization, because the wild-type ribozyme binds the 5'-exon analog more strongly in the active site than in the 5'-splice site analog. Thus, binding into the active site constitutes an additional barrier to reaction of the 5'-splice site analog, but not the 5'-exon analog, resulting in a reduced reaction rate constant for the first step analog, but not the second step analog. This threshold model explains the self-splicing observations without the need to invoke a conformational change involving the base triple, and underscores the importance of quantitative dissection for the interpretation of effects from mutations.  相似文献   

6.
Hsiao NW  Samuel D  Liu YN  Chen LC  Yang TY  Jayaraman G  Lyu PC 《Biochemistry》2003,42(38):11183-11193
A unique class of proteins, containing high-mobility group (HMG) domain(s), recognizes unusual DNA structures and/or bends specific to AT-rich linear double-stranded DNA. The DNA binding feature of these proteins is exhibited in the HMG domain(s). Although the sequence specific and non-sequence specific HMG domains exhibit very high degrees of sequence similarity, the reasons for the difference between their DNA recognition mechanisms are unclear. A series of zebra fish SOX9 HMG domain mutants was prepared in an effort to elucidate the importance of various residues on protein stability and DNA binding. This study is the first of a comprehensive mutagenesis study on a sequence specific HMG domain. Comparing how various residues influence sequence specific and non-sequence specific HMG domains helps us to rationalize their mode of action. Positively charged amino acids concentrated at the surface of sequence specific HMG domains recognize specific, linear AT-rich DNA segments. After the negative charges at the surface of the DNA are neutralized, the hydrophobic residues of the protein may intercalate DNA. Phenylalanine at position 12 plays a crucial role in the sequence specific HMG domain. The differences in pI values, the instability index, and DNA contact regions between sequence and non-sequence specific HMG domains are associated with their functional modes.  相似文献   

7.
Kinetic characterization of two I/II format hammerhead ribozymes.   总被引:2,自引:1,他引:1       下载免费PDF全文
Five new hammerhead ribozymes were designed that assemble through the formation of helices I and II (I/II format) instead of the more standard assembly through helices I and III (I/III format). The substrate binding and cleavage properties of such hammerheads could potentially be different due to the absence of loop II and the requirement for the entire catalytic core to assemble. Two I/II format hammerheads, HHalpha1 and HHalpha5, which show structural homogeneity on native gels, were characterized kinetically. The association rate constants of both I/II hammerheads are unusually slow compared to the rate of RNA duplex formation. The dissociation rate constants indicate that the hammerhead core destabilizes an uninterrupted RNA helix somewhat less than was observed for I/III hammerheads. Whereas the cleavage rate constant of HHalpha5 is similar to that observed for I/III hammerheads, HHalpha1 cleaves 10-fold faster than any hammerhead previously reported. The temperature and pH dependence of the cleavage rate constant of HHalpha1 are similar to those reported for I/III hammerheads, suggesting a similar mechanism of cleavage.  相似文献   

8.
We report thermodynamic values for binding of the guanosine nucleophile to the ribozyme derived from the Anabaena group I intron, and find that they are similar to those measured previously for the structurally distinct Tetrahymena ribozyme. The free energy of binding guanosine 5'-monophosphate (pG) at 30 degrees C is similar for the two ribozymes. The delta(H)degrees' and delta(S)degrees' for pG binding to the Anabaena ribozyme--RNA substrate complex (E x S) are 3.4 +/- 4 kcal/mol and 27 +/- 10 e.u., respectively. The negligible enthalpic contribution and positive entropy change were found previously for the Tetrahymena ribozyme, and are considered remarkable for a hydrogen-bonding interaction between a nucleotide and a nucleic acid. These thermodynamic values may reflect conformational changes or water release upon pG binding that are comparable for the two ribozymes. In addition, the apparent chemical steps of the two ribozyme reactions share similar activation energies and a positive deltaS++. It now appears that such thermochemical values for guanosine binding and activation may be intrinsic properties of the group I intron catalytic center.  相似文献   

9.
Group I intron-derived ribozymes can catalyze a variety of non-native reactions. For the trans-excision-splicing (TES) reaction, an intron-derived ribozyme from the opportunistic pathogen Pneumocystis carinii catalyzes the excision of a predefined region from within an RNA substrate with subsequent ligation of the flanking regions. To establish TES as a general ribozyme-mediated reaction, intron-derived ribozymes from Tetrahymena thermophila and Candida albicans, which are similar to but not the same as that from Pneumocystis, were investigated for their propensity to catalyze the TES reaction. We now report that the Tetrahymena and Candida ribozymes can catalyze the excision of a single nucleotide from within their ribozyme-specific substrates. Under the conditions studied, the Tetrahymena and Candida ribozymes, however, catalyze the TES reaction with lower yields and rates [Tetrahymena (kobs) = 0.14/min and Candida (kobs) = 0.34/min] than the Pneumocystis ribozyme (kobs = 3.2/min). The lower yields are likely partially due to the fact that the Tetrahymena and Candida catalyze additional reactions, separate from TES. The differences in rates are likely partially due to the individual ribozymes ability to effectively bind their 3′ terminal guanosines as intramolecular nucleophiles. Nevertheless, our results demonstrate that group I intron-derived ribozymes are inherently able to catalyze the TES reaction.  相似文献   

10.
11.
A comparative database of group I intron structures.   总被引:13,自引:3,他引:10       下载免费PDF全文
We have created a database of comparatively derived group I intron secondary structure diagrams. This collection currently contains a broad sampling of phylogenetically and structurally similar and diverse structures from over 200 publicly available intron sequences. As more group I introns are sequenced and added to the database, we anticipate minor refinements in these secondary structure diagrams. These diagrams are directly accessible by computer as well as from the authors.  相似文献   

12.
J Amemura-Maekawa  E Ohtsubo 《Gene》1991,103(1):11-16
Bacterial transposon Tn3 has a 38-bp terminal inverted repeat (IR) sequence. The IR sequence has been divided into two domains, A and B, of which domain B is bound by transposase, and domain A is not Here, we defined the two domains more precisely by constructing three IR mutants with a 2-bp substitution at relevant sites within the IR sequence, followed by examination of the binding of transposase to the fragments containing these IR mutants: domain A was located at bp 1-11, whereas domain B was at bp 12-38. To see if the two domains in the IR are functionally distinct, we constructed mini-Tn3 derivatives flanked by two IRs with various 2-bp substitutions within domain A or B, and analyzed their ability to mediate cointegration. The mini-Tn3 derivatives flanked by IR(A+ B+) and IR(A- B+) [or IR(A+ B-)] and those flanked by IR(A-B+) and IR(A+ B-) mediate cointegration more efficiently than the mini-Tn3 derivatives flanked by two IR(A- B+)s or by two IR(A+ B-)s. These results and others presented here indicate that the two domains of IR are functionally distinct in promoting cointegration.  相似文献   

13.
Mutagenesis analysis of a self-cleaving RNA.   总被引:11,自引:10,他引:1       下载免费PDF全文
The hammerhead structural model proposed for sequences that mediate self-cleavage of certain RNAs contains base-paired three stems and 13 conserved bases. Insertion, deletion and base substitution mutations were carried out on a 58 base RNA containing the sequence of the single-hammerhead structure of the plus RNA of the virusoid of lucerne transient streak virus, and the effects on self-cleavage assessed. Results showed that there is flexibility in the sequence requirements for self-cleavage in vitro, but alterations of the conserved sequence or predicted secondary structure generally reduced the efficiency of self-cleavage.  相似文献   

14.
The catalytic core of Group I self-splicing introns has been proposed to consist of two structural domains, P4-P6 and P3-P9. Each contains helical segments and conserved unpaired nucleotides, and the isolated P4-P6 domain has been shown to have substantial native tertiary structure. The proposed tertiary structure domains of the Tetrahymena intron were synthesized separately and shown to self-assemble into a catalytically active complex. Surprisingly, the concentration dependence of these reactions revealed that the domains interact with nanomolar apparent dissociation constants, even though there is no known base pairing between P4-P6 and P3-P9. This suggests that the domains interact through multiple tertiary contacts, the nature of which can now be explored in this system. For example, a circularly permuted version of the P4-P6 domain, which folds similarly to the native P4-P6 molecule, formed a stable but inactive complex. Interestingly, activity was demonstrated with the permuted molecule when nucleotides proposed to form a triple-strand interaction with P4 and P6 were restored as part of the P1-P3 substrate or as part of the P3-P9 RNA. Thus, beyond stabilization of the P4-P6 domain, the triple-strand region may facilitate correct orientation of the RNA domains or participate more directly in catalysis.  相似文献   

15.
Domain 5 (D5) and domain 6 (D6) are adjacent folded hairpin substructures of self-splicing group II introns that appear to interact within the active ribozyme. Here we describe the effects of changing the length of the 3-nucleotide segment joining D5 to D6 [called J(56)3] on the splicing reactions of intron 5 gamma of the COXI gene of yeast mitochondrial DNA. Shortened variants J(56)0 and J(56)1 were defective in vitro for branching, and the second splicing step was performed inefficiently and inaccurately. The lengthened variant J(56)5 had a milder defect-splicing occurred at a reduced rate but with correct branching and a mostly accurate 3' splice junction choice. Yeast mitochondria were transformed with the J(56)5 allele, and the resulting yeast strain was respiration deficient because of ineffective aI5 gamma splicing. Respiration-competent revertants were recovered, and in one type a single joiner nucleotide was deleted while in the other type a nucleotide of D6 was deleted. Although these revertants still showed partial splicing blocks in vivo and in vitro, including a substantial defect in the second step of splicing, both spliced accurately in vivo. These results establish that a 3-nucleotide J(56) is optimal for this intron, especially for the accuracy of 3' splice junction selection, and indicate that D5 and D6 are probably not coaxially stacked.  相似文献   

16.
We report several biological activities of a synthetic peptide whose sequence contains the highly conserved region of feline leukemia virus transmembrane protein (TM) synthetically linked to another short TM-derived sequence particularly rich in polar positive residues. This 29-amino-acid peptide blocked [3H]thymidine uptake 30 to 50% by concanavalin A-stimulated CD4(+)--but not CD8(+)-enriched murine splenocytes. Maximal suppression was detected at 12.5 micrograms (3 microM) to 75 micrograms (19 microM) per ml of growth medium; stimulation of [3H]thymidine uptake was observed at higher peptide concentrations. The synthetic peptide inhibited but did not stimulate [3H]thymidine uptake by mitogen-activated thymocytes and antibody production by splenocytes as determined in a liquid hemolytic plaque assay. Similarities are reported between a consensus sequence of diverse retroviral TMs and a region of alpha interferons shown by others to be important for antiviral and cytostatic properties. The TM sequence-derived synthetic peptide blocked in a nontoxic and sequence-specific manner the release of murine leukemia virus from two chronically infected cell lines. We suggest that some of the biological effects of retroviral TM are mediated through a common pathway shared with alpha interferons.  相似文献   

17.
We present the complete nucleotide sequence and the deduced amino acid sequence of the H-2Dp class I gene. This gene, which was cloned from a B10.P genomic DNA library, encodes and intact, functional H-2Dp molecule. Comparative analysis of the Dp sequence with other class I sequences reveals both similarities and differences. This analysis also shows that these genes exhibit D region-specific, locus-specific, as well as allele-specific sequences. The H-2Dp nucleotide sequence is greater than 90% homologous to the H-2Ld and H-2Db genes and only approximately 85% homologous to the H-2Dd gene. The K region and Qa region genes are less homologous. The 3' noncoding sequences appear to be region-specific. All of the previously described D region genes, Db, Ld, and Dd, possess the B2-SINE Alu-like repetitive sequence, as does Dp. Thus, this B2 repeat is a region-specific marker present in all D region genes studied so far. The additional polyadenylation site found in the H-2Dp gene starting at nucleotide 4671, which is homologous to non-D region sequences, as well as unique protein Dp coding sequences, make this gene an interesting model for studying the evolution of polymorphism and structure/function relationships in the class I gene family.  相似文献   

18.
We have examined the effect of a naphthylquinoline triplex-binding ligand on the formation of intermolecular triplexes on DNA fragments containing the target sites A6G6xC6T6 and G6A6xT6C6. The ligand enhances the binding of T6C2, but not T2C6, to A6G6xC6T6 suggesting that it has a greater effect on TxAT than C+xGC triplets. The complex with T6C2 is only stable below pH 6.0, confirming the requirement for protonation of the third strand cytosines. Antiparallel triplexes with GT-containing oligonucleotides are also stabilised by the ligand. The complex between G5T5 and A6G6xC6T6 is stabilised by lower ligand concentrations than that between T5G5 and G6A6xC6T6. The ligand does not promote the interaction with GT-containing oligonucleotides which have been designed to bind in a parallel orientation. Although the formation of antiparallel triplexes is pH independent, we find that the ligand has a greater stabilising effect at lower pH, suggesting that the active species is protonated. The ligand does not promote the binding of antiparallel GA-containing oligonucleotides at pH 7.5 but induces the interaction between A5G5 and G6A6xT6C6 at pH 5.5. Ethidium bromide does not promote the formation of any of these triplexes and destabilises the interaction of acridine-linked pyrimidine-containing third strands with these target sites.  相似文献   

19.
The magnitude of the genetic relatedness of the two antigenic subtypes of equine herpesvirus 1 (EHV-1) was determined by DNA-DNA reassociation kinetics. Denatured, labeled viral DNA from one EHV-1 subtype was allowed to reassociate in the presence or absence of the unlabeled heterologous viral DNA. The initial rate of reassociation of either labeled viral DNA was increased by the presence of the heterologous viral DNA to an extent indicating 10 to 20% homology between the two EHV-1 genomes. Similar estimates of the amount of homology between the genomes of the two EHV-1 subtypes were obtained by determining the maximum fraction of labeled viral DNA that could be made resistant to S1 nuclease by hybridization with a large molar excess of the unlabeled, heterologous viral DNA. Analysis of the thermal stability of the subtype 1-subtype 2 heteroduplex DNA indicated approximately 30% base pair mismatching within the hybrid DNA molecules. Cross-hybridization of 32P-labeled virion DNA to nitrocellulose blots of restriction endonuclease cleavage fragments of each EHV-1 subtype DNA indicated that the observed homology between the two viruses was nonuniformly distributed with the viral genome. No homology could be detected between the DNA of either EHV-1 subtype and that of a strain of equine cytomegalovirus (EHV-2). The data suggest that the two biotypes of EHV-1 have arisen by divergent evolution from a common progenitor herpesvirus.  相似文献   

20.
James Hutton (1726-1797) regarded Earth as a super-organism and physiology the science to study it. A strong line of evidence for an intimate relationship of biological and abiotic processes on Earth leads from Hutton to the Gaia theory of J. Lovelock. A less known in the West but important approach to the biosphere as a self-regulating system (the biosphere theory) was proposed V.I. Vernadsky (1863-1945). The main concern of this paper revolves around the question: What is the difference between Gaia and the biosphere? To approach the problem of Earth as a super-organism one can use also the biosphere theory of V. N. Beklemishev (1890-1962), who examined the biosphere from a morphological viewpoint.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号