首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have used fluorescence energy transfer in the rapid-diffusion limit (RDL) to estimate the trans-membrane depth of retinal in the purple membrane (PM). Chelates of Tb(III) are excellent energy donors for the retinal chromophore of PM, having a maximum Ro value for F?rster energy transfer of approximately 62 A (assuming a donor quantum yield of 1). Energy transfer rates were measured from the time-resolved emission kinetics of the donor. The distance of closest approach between chelates and the chromophore was estimated by simulating RDL energy-transfer rate constants according to geometric models of either PM sheets or membrane vesicles. The apparent rate constant for RDL energy transfer between Tb(III)HED3A and retinal in PM sheets is 1.5(+/- 0.1) x 10(6) M-1 s-1, corresponding to a depth of approximately 10 +/- 2 A for the retinal chromophore. Cell envelope vesicles (CEVs) from Halobacterium halobium were studied by using RDL energy transfer to assess the proximity of retinal to either the extracellular or intracellular face of the PM. The estimated depth of retinal from the extravesicular face of the PM is 10 +/- 3 A, based on the RDL energy-transfer rate constant. Energy-transfer levels to retinal in the PM were estimated by an indirect method with energy donors trapped in the inner-aqueous space of CEVs. The rate constants derived for this arrangement are too low to be consistent with the shortest depth of retinal deduced for PM sheets. Thus, the intravesticular face of CEVs, corresponding to the cytoplasmic face of cells, is the more distant surface from the chromophore of bacteriorhodopsin.  相似文献   

2.
The interaction of adriamycin with lipids was studied in model (monolayers, small unilamellar vesicles, large multilamellar vesicles) and natural (chinese hamster ovary cell) membranes by measurement of fluorescence energy transfer and fluorescence quenching. 2-APam, 7-ASte, 12-ASte and anthracene-phosphatidylcholine were used as fluorescent probes in which the anthracene group is well located at graded depths in the membrane. Egg-yolk phosphatidylcholine and a 1/1 mixture of it with bovine brain phosphatidylserine were used in model membrane systems. Large fluorescence energy transfer was observed between these molecules as donors and the drug as acceptor. With liposomes, at pH 7.4 and over an adriamycin concentration range of 0-100 microM, the efficiency of energy transfer was 12-ASte greater than 7-ASte greater than 2-APam, with 100% energy transfer for 12-ASte above a drug concentration of 30 microM. At pH 5, where the fatty acids are buried deeper (0.45 nm) in the lipid bilayer due to protonation of the carboxyl group, the order of energy transfer 7-ASTe greater than 12-ASte = 2-APam was observed. Measurements of fluorescence quenching using the non-permeant Cu2+ ion as quencher and spectrophotometric assays indicated that around 40% of the adriamycin molecules were deeply embedded in the lipid bilayer. Adriamycin molecules thus appear to penetrate the lipid bilayer, with the aminoglycosyl group interacting with the lipid phosphate groups and the dihydroanthraquinone residue in contact with the lipid fatty acid chains. In contrast, fluorescence energy transfer and quenching studies on CHO cells showed that adriamycin penetrated the plasma membrane of these cells to a much more limited extent than in the model membrane systems. This can be related to the squeezing out of the drug from a film of phosphatidylcholine which was observed in monolayers by means of surface pressure, potential and fluorescence experiments. These observations indicated that the penetration of adriamycin into lipid bilayers strongly depends on the molecular packing of the lipid.  相似文献   

3.
Fluorescence energy transfer between the donor diphenylhexatriene (DPH) and the acceptor retinal and fluorescence depolarization of DPH are used to test current theories for fluorescence energy transfer in two-dimensional systems and to obtain information on the effect of the intrinsic membrane protein, bacteriorhodopsin, on the order and dynamics of the lipid phase. Increasing the surface concentration of acceptors by raising the protein to lipid ratio leads to a decrease in the mean fluorescence lifetime by up to a factor of four. When the acceptor concentration is reduced at a fixed protein to lipid ratio by photochemical destruction of retinal, the lifetime increases and reaches approximately the value observed in protein-free vesicles when the bleaching is complete. The shape of the decay curve and the dependency of the mean lifetime on the surface concentration of acceptors are in agreement with theoretical predictions for a two-dimensional random distribution of donors and acceptors. From this analysis a distance of closest approach between donors and acceptors of approximately 18 A is obtained, which is close to the effective radius of bacteriorhodopsin (17 A) and consistent with current ideas about the location of retinal in the interior of the protein. In the absence of energy transfer (bleached vesicles), the steady-state fluorescence anisotropy, -r, of DPH is considerably lower than in the corresponding unbleached vesicles, indicating that the effect of energy transfer must be taken into account when interpreting -r in terms of order and dynamics.  相似文献   

4.
Thermodynamics and kinetics of phospholipid monomer-vesicle interaction   总被引:5,自引:0,他引:5  
J W Nichols 《Biochemistry》1985,24(23):6390-6398
Resonance energy transfer between acyl chain labeled (7-nitro-2,1,3-benzoxadiazol-4-yl)phosphatidylcholine (NBD-PC) and head group labeled (lissamine rhodamine B sulfonyl)phosphatidylethanolamine (N-Rh-PE) was used to monitor the rate of NBD-PC transfer between two populations of dioleoylphosphatidylcholine (DOPC) vesicles. Equilibration of NBD-PC between DOPC vesicles occurs by the diffusion of soluble monomers through the water phase, which is a first-order process. Conditions were used such that the apparent transfer rate constant is equal to the rate constant for monomer-vesicle dissociation into solution. The partition distribution of NBD-PC between DOPC vesicles and water was determined by measuring the loss of NBD-PC from vesicles into solution following the dilution of small amounts of vesicles in buffer. The acyl chain length and temperature dependence of both the rate and partition measurements were determined, and a free energy diagram for NBD-PC-soluble monomer-vesicle interactions was constructed. The conclusions of this analysis are the following: NBD-PC dissociation from and association with the bilayer require passage through a high-energy transition state resulting predominantly from enthalpic energy. The activation energy for NBD-PC-vesicle dissociation becomes more positive and the standard free energy of NBD-PC transfer from water to vesicles becomes more negative with increasing acyl chain length. The standard free energy of transfer for NBD-PC from water to vesicles results predominantly from differences in enthalpy between the membrane and water phases. The enthalpy of activation for association increases with acyl chain length and is larger than expected for an aqueous diffusion-limited process in bulk water.  相似文献   

5.
The mammalian glycolipid transfer protein, GLTP, catalyzes the transfer in vitro of glycolipids between membranes. In this study we have examined on one hand the effect of the variations in the donor vesicle composition and on the other hand the effects of variations in the acceptor vesicle composition on the GLTP-catalyzed transfer kinetics of galactosylceramide between bilayer vesicles. For this purpose a resonance energy transfer assay was used, the energy donor being anthrylvinyl-galactosylceramide and the energy acceptor DiO-C16. First, we show that the transfer of anthrylvinyl-galactosylceramide from palmitoyl-oleoyl-phosphatidylcholine donor vesicles was faster than from dipalmitoyl-phosphatidylcholine vesicles, and that there is no transfer from palmitoyl-sphingomyelin vesicles regardless of the cholesterol amount. In this setup the acceptor vesicles were always 100% palmitoyl-oleoyl-phosphatidylcholine. We also showed that the transfer in general is faster from small highly curved vesicles compared to that from larger vesicles. Secondly, by varying the acceptor vesicle composition we showed that the transfer is faster to mixtures of sphingomyelin and cholesterol compared to mixtures of phosphatidylcholines and cholesterol. Based on these experiments we conclude that the GLTP mediated transfer of anthrylvinyl-galactosylceramide is sensitive to the matrix lipid composition and membrane bending. We postulate that a tightly packed membrane environment is most effective in preventing GLTP from accessing its substrates, and cholesterol is not required to protect the glycosphingolipid in the membrane from being transferred by GLTP. On the other hand GLTP can more easily transfer glycolipids to ‘lipid raft’ like membranes, suggesting that the protein could be involved in raft assembly.  相似文献   

6.
Preparations enriched in part-smooth (lacking ribosomes), part-rough (with ribosomes) transitional elements of the endoplasmic reticulum when incubated with ATP plus a cytosol fraction responded by the formation of blebbing profiles and approximately 60-nm vesicles. The 60-nm vesicles formed resembled closely transition vesicles in situ considered to function in the transfer of membrane materials between the endoplasmic reticulum and the Golgi apparatus. The transition elements following incubation with ATP and cytosol were resolved by preparative free-flow electrophoresis into fractions of differing electronegativity. The main fraction contained the larger vesicles of the transitional membrane elements, while a less electronegative minor shoulder fraction was enriched in the 60-nm vesicles. If the vesicles concentrated by preparative free-flow electrophoresis were from material previously radiolabeled with [3H]leucine and then added to Golgi apparatus immobilized to nitrocellulose, radioactivity was transferred to the Golgi apparatus membranes. The transfer was rapid (T1/2 of about 5 min), efficient (10-30% of the total radioactivity of the transition vesicle preparations was transferred to Golgi apparatus), and independent of added ATP but facilitated by cytosol. Transfer was specific and apparently unidirectional in that Golgi apparatus membranes were ineffective as donor membranes and endoplasmic reticulum vesicles were ineffective as recipient membranes. Using a heterologous system with transition vesicles from rat liver and Golgi apparatus isolated from guinea pig liver, coalescence of the small endoplasmic reticulum-derived vesicles with Golgi apparatus membranes was demonstrated using immunocytochemistry. Employed were polyclonal antibodies directed against the isolated rat transition vesicle preparations. When localized by immunogold procedures at the electron microscope level, regions of rat-derived vesicles were found fused with cisternae of guinea pig Golgi apparatus immobilized to nitrocellulose strips. Membrane transfer was demonstrated from experiments where transition vesicle membrane proteins were radioiodinated by the Bolton-Hunter procedure. Additionally, radiolabeled peptide bands not present initially in endoplasmic reticulum appeared following coalescence of the derived vesicles with Golgi apparatus. These bands, indicative of processing, required that both Golgi apparatus and transition vesicles be present and did not occur in incubated endoplasmic reticulum preparations or on nitrocellulose strips to which no Golgi apparatus were added.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
Summary The process of formation from endoplasmic reticulum and transfer to Golgi apparatus of small 50–70 nm transition vesicles has been reconstituted in a cell-free system. Fractions enriched in transition elements derived from part-rough, part-smooth transitional regions of the endoplasmic reticulum were prepared from elongation zones of hypocotyls of etiolated seedlings of soybean and coleoptiles of maize and were compared with those from rat liver. When activated with nucleoside triphosphate, cytosol and an ATP regenerating system, time- and temperature-dependent transfer of membranes to Golgi apparatus acceptor was demonstrated. The fractions enriched in transition elements were radioiodinated with125I by the Bolton-Hunter procedure. Acceptor Golgi apparatus stacks were immobilized to nitrocellulose strips to facilitate analysis. In heterologous transfer experiments, the plant and animal acceptors and donors could be interchanged. The transfer was limited primarily by the donor (rat liver > soybean hypocotyl > maize coleoptiles) and determined secondarily by the source of the acceptor. The acceptor fractions were most efficacious when prepared from the same source as the donor. Thus, 50–70 nm vesicles bud from transitional endoplasmic reticulum elements of plants function in a manner similar to those of animal cells to transfer membrane materials to the Golgi apparatus. The recognition signals that determine vesicle fusion appear to be conserved both among species and between the plant and animal kingdoms to the extent that donor and acceptor sources may be interchanged with only small reductions in overall efficiency of transfer.Abbrevations HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - EDTA ethylenediaminetetraacetic acid  相似文献   

8.
Simard JR  Pillai BK  Hamilton JA 《Biochemistry》2008,47(35):9081-9089
Fatty acids (FA) are known to diffuse (flip-flop) rapidly across protein-free phospholipid bilayers in their un-ionized form. However, whether flip-flop through the hydrophobic core of the bilayer or desorption from the membrane into the aqueous phase is the rate-limiting step in FA transport through membranes is still debated. The issue has remained unresolved in part by disagreements over whether some methods of adding FA create artifacts that lead to erroneous conclusions and in part by the lack of fluorescence methods to monitor each individual step. Here we study the kinetics of FA transfer from donors to phospholipid vesicles (small and large unilamellar vesicles) by a dual fluorescence approach that utilizes the probes fluorescein phosphatidylethanolamine (FPE) and pyranine. FPE detects the concentration of FA anions in the outer membrane leaflet, allowing a precise measurement of kinetics of FA adsorption or desorption. Our results showed that as soon as FPE detects adsorption of FA into the outer leaflet, pyranine detects its movement to the inner leaflet. We further demonstrated that (i) flip-flop for FA with 14-22 carbons is much faster than the rates of desorption and therefore cannot be the rate-limiting step of FA translocation across membranes; (ii) fluorescence changes detected by probes located on or in acceptor vesicles are dependent upon the method used to deliver the FA (i.e., uncomplexed, or complexed to albumin or phospholipid bilayers); however, (iii) transfer kinetics observed in the presence of different donors is rate-limited by the desorption of FA from the donor into the aqueous phase rather than by flip-flop.  相似文献   

9.
Glycolipid transfer protein from bovine brain   总被引:2,自引:0,他引:2  
Glycolipid transfer protein from bovine brain has been purified partially by ammonium sulfate precipitation, CM-52 ion-exchange, and Sephadex G-75 column chromatography. Both pyrene-labeled and tritium-labeled glucocerebrosides have been used to study the kinetics of protein-mediated transfer between donor and acceptor vesicles. Protein accelerates glucocerebroside transfer but does not accelerate phospholipid transfer. In colyophilized small sonicated vesicles (10% glucocerebroside, 90% 1-palmitoyl-2-oleoyl-phosphatidylcholine) about two-thirds of the glycolipid is transferred in 2 h and the remaining one-third does not transfer (up to 5 h). For donor and acceptor vesicles made of dipalmitoylphosphatidylcholine or 1-palmitoyl-2-oleoyl-phosphatidylcholine, glucocerebroside (10% in donors) is transferred rapidly only when both the donor and acceptor matrix phospholipids are in the liquid-crystalline state. If either donor or acceptor vesicles are in the gel state, transfer protein mediated transfer is much reduced. The amount of transfer protein bound specifically to glucocerebroside-containing vesicles is nearly equal above and below the matrix phospholipid phase transition temperature. Bound protein transfers glucocerebroside upon addition of acceptor vesicles.  相似文献   

10.
The phospholipids of lipoproteins can be transferred to cells by an endocytosis-independent uptake pathway. We analyzed the role of scavenger receptor BI (SR-BI) for the selective cellular phospholipid import. Human monocytes rapidly acquired the pyrene (py)-labeled phospholipids sphingomyelin (SM), phosphatidylcholine, and phosphatidylethanolamine from different donors (low and high density lipoproteins (LDL, HDL), lipid vesicles). The anti-SR-BI antibody directed against the extracellular loop of the membrane protein lowered the cellular import of the phospholipids by 40-80%. The phospholipid transfer from the lipid vesicles into the monocytes was suppressed by LDL, HDL, and apoprotein AI. Transfection of BHK cells with the cDNA for human SR-BI enhanced the cellular import of the vesicle-derived py-phospholipids by 5-6-fold. In the case of the LDL donors, transfer of py-SM to the transfected cells was stimulated to a greater extent than the uptake of the other py-phospholipids. Similar differences were not observed when the vesicles and HDL were used as phospholipid donors. The concentration of LDL required for the half-maximal phospholipid import was close to the previously reported apparent dissociation constant for LDL binding to SR-BI. The low activation energy of the SR-BI-mediated py-phospholipid import indicated that the transfer occurs entirely in a hydrophobic environment. Disruption of cell membrane caveolae by cyclodextrin treatment reduced the SR-BI-catalyzed incorporation of py-SM, suggesting that intact caveolae are necessary for the phospholipid uptake. In conclusion, SR-BI mediates the selective import of the major lipoprotein-associated phospholipids into the cells, the transfer efficiency being dependent on the structure of the donor lipoprotein.  相似文献   

11.
The mammalian glycolipid transfer protein, GLTP, catalyzes the transfer in vitro of glycolipids between membranes. In this study we have examined on one hand the effect of the variations in the donor vesicle composition and on the other hand the effects of variations in the acceptor vesicle composition on the GLTP-catalyzed transfer kinetics of galactosylceramide between bilayer vesicles. For this purpose a resonance energy transfer assay was used, the energy donor being anthrylvinyl-galactosylceramide and the energy acceptor DiO-C16. First, we show that the transfer of anthrylvinyl-galactosylceramide from palmitoyl-oleoyl-phosphatidylcholine donor vesicles was faster than from dipalmitoyl-phosphatidylcholine vesicles, and that there is no transfer from palmitoyl-sphingomyelin vesicles regardless of the cholesterol amount. In this setup the acceptor vesicles were always 100% palmitoyl-oleoyl-phosphatidylcholine. We also showed that the transfer in general is faster from small highly curved vesicles compared to that from larger vesicles. Secondly, by varying the acceptor vesicle composition we showed that the transfer is faster to mixtures of sphingomyelin and cholesterol compared to mixtures of phosphatidylcholines and cholesterol. Based on these experiments we conclude that the GLTP mediated transfer of anthrylvinyl-galactosylceramide is sensitive to the matrix lipid composition and membrane bending. We postulate that a tightly packed membrane environment is most effective in preventing GLTP from accessing its substrates, and cholesterol is not required to protect the glycosphingolipid in the membrane from being transferred by GLTP. On the other hand GLTP can more easily transfer glycolipids to 'lipid raft' like membranes, suggesting that the protein could be involved in raft assembly.  相似文献   

12.
C Pryor  M Bridge  L M Loew 《Biochemistry》1985,24(9):2203-2209
A new fluorescent lipid analogue, bimanephosphatidylcholine, has been synthesized for use in lipid bilayers. This probe is well suited as an energy-transfer donor with N-(7-nitro-2,1,3-benzoxadiazol-4-yl)phosphatidylethanolamine as the acceptor. Dimyristoylphosphatidylethanolamine vesicles are prepared by sonication at pH 9 and characterized by electron microscopy and other methods. Resonance energy transfer between separately labeled donor and acceptor vesicles is monitored during HCl-induced aggregation to determine the kinetics of lipid randomization. Light scattering is also monitored to measure the kinetics of aggregation. The light scattering shows a marked reversal with NaOH while the energy transfer does not, indicating lipid exchange during a reversibly aggregated state; the extent of energy transfer suggests that only lipids in the outer monolayers exchange. The gel to liquid-crystalline phase transition temperature in HCl-treated vesicles is found to be 47 degrees C with diphenylhexatriene. The initial sonicated dispersion does not show a sharp phase transition. In vesicles labeled with both donor and acceptor probes, a small, irreversible increase in energy transfer is obtained upon lowering and then restoring the pH. These results suggest a metastable phase in the sonicated vesicles containing a randomized distribution of lipid and probes within the bilayers; the thermodynamically favored phase, whose formation is triggered by the pH shock, contains domains within which the probe lipids are more highly concentrated.  相似文献   

13.
Triglyceride lipase from Thermomyces lanuginosa (TlL) binds to the non-substrate small (40 nm) unilamelar vesicles of 1,2-dimiristoylglycero-sn-3-phosphoglycerol (DMPG-SUVs) in a catalytically active structure, whereas it adopts a catalytically incompetent form in binding to zwitterionic 1,2-dimiristoylglycero-sn-3-phosphocholine (DMPC-SUVs) or to large (100 nm) unilamelar DMPG (DMPG-LUVs) vesicles. Steady-state anisotropy measurements with probes that localize at different positions in the membrane give information on the effects of TlL (and its mutants) on the mobility of the phospholipids. All TlL mutants insert into the DMPG-SUVs and increase lipid order at the headgroup region and at the hydrophobic core of the lipid bilayer as well. The increase of the rigidity of the membrane that occurs in the gel and liquid crystal states, results in an increase of the phase transition temperature (Tm). Kinetic experiments with monolayers of 1,2-dicaprin demonstrate the thermal stability of the enzyme in the range of temperatures of the phase transition. Mutations in the tryptophan (Trp) residues of TlL reduce activity of this enzyme and affect its interaction with the membrane. The membrane insertions of TlL mutants with other than Trp substitutions are much more shallower and produce only small increases of Tm, whereas mutation of lid-located Trp89 or mutation of any other Trp residue (117, 221, 260) result in a deeper penetration and significant increases of the Tm. Lipid dynamics of DMPC-SUVs or DMPG-LUVs are not affected by any of the TlL mutants, despite their strong binding to the lipids revealed by resonance energy transfer (RET). These results are consistent with the lipase–lipid penetration model in which the “lid” region of TlL inserts into the highly curved anionic interface, thus stabilizing the “open” or active enzyme conformation, whereas TlL binds to the surface of zwitterionic and large (small curvature) anionic vesicles in a “closed” (or inactive) conformation, without insertion of the lid.  相似文献   

14.
The apparent quantum yield of singlet-singlet spirilloxanthin-to-bacteriochlorophyll a energy transfer increases linearly with the residual spirilloxanthin content in Rhodospirillum rubrum membrane vesicles from which this carotenoid has been partially removed. Since it has been previously shown that carotenoid-carotenoid interaction is a linear function of the residual spirilloxanthin level in the major pigment-protein complex of those vesicles (Zurdo, J., R. M. Lozano, C. Fernandez-Cabrera, and J. M. Ramirez. 1991. Biochem. J. 274:881-884), it appears that such degenerate interaction enhances singlet energy transfer. Part of the enhancement may be explained if the energy donor is the spirilloxanthin 1Bu----1Ag (S2----S0) transition, because exciton coupling probably brings its energy closer to that of the Qx (S2----S0) transition of bacteriochlorophyll. In contrast, it seems that the possible stabilization of the spirilloxanthin 2Ag (S1) state would hardly improve energy transfer, because this hidden state probably lies below the S1 bacteriochlorophyll state. In any case, the stabilizing effects of carotenoid-carotenoid interactions seem insufficient to explain the enhancement of energy transfer. Direct or indirect effects of carotenoid dimerization on the three-dimensional structure of the pigment cluster appear to be required to account for such enhancement.  相似文献   

15.
Ortiz A  Cajal Y  Haro I  Reig F  Alsina MA 《Biopolymers》2000,53(6):455-466
The interaction of the multiple antigenic peptide MAP4VP3 with lipid membranes has been studied by spectroscopic techniques. MAP4VP3 is a multimeric peptide that corresponds to four units of the sequence 110-121 of the capsid protein VP3 of hepatitis A virus. In order to evaluate the electrostatic and hydrophobic components on the lipid-peptide interaction, small unilamelar vesicles of different compositions, including zwitterionic dipalmitoylphosphatidylcholine (DPPC), anionic dipalmitoylphosphatidylcholine/phatidylinositol (DPPC:PI 9:1), and cationic dipalmitoylphosphatidylcholine/stearylamine (DPPC:SA 9.5:0.5), were used as membrane models. Intrinsic tryptophan fluorescence changes and energy transfer experiments show that MAP4VP3 binds to all three types of vesicles with the same stoichiometry, indicating that the electrostatic component of the interaction is not important for binding of this anionic peptide. Steady-state polarization experiments with vesicles labeled with 1,6-diphenyl-1,3,5-hexatriene or with 1-anilino-8-naphtalene sulphonic acid indicate that MAP4VP3 induces a change in the packing of the bilayers, with a decrease in the fluidity of the lipids and an increase in the temperature of phase transition in all the vesicles. The percentage of lipid exposed to the bulk aqueous phase is around 60% in intact vesicles, and it does not change upon binding of MAP4VP3 to DPPC vesicles, indicating that the peptide does not alter the permeability of the membrane. An increase in the amount of lipid exposed to the aqueous phase in cationic vesicles indicates either lipid flip-flop or disruption of the vesicles. Binding to DPPC vesicles occurs without leakage of entrapped carboxyfluorescein, even at high mol fractions of peptide. However, a time-dependent leakage is seen with cationic DPPC/SA and anionic DPPC/PI vesicles, indicating that the peptide induces membrane destabilization and not lipid flip-flop. Resonance energy transfer experiments show that MAP4VP3 leakage from cationic vesicles is due to membrane fusion, whereas leakage from anionic vesicles is not accompanied by lipid mixing. Results show that MAP4VP3 interacts strongly with the lipid components of the membrane, and although binding is not of electrostatic nature, the bound form of the peptide has different activity depending on the membrane net charge; thus, it is membrane disruptive in cationic and anionic vesicles, whereas no destabilizing effect is seen in DPPC vesicles.  相似文献   

16.
Using fluorescent, anionic dyes such as carboxyfluorescein as model solutes, it is shown that the forces allowing such solutes to be retained within sealed lipid vesicles, against a large concentration gradient, can be primarily electrostatic in nature. At temperatures distant from that of the ordered-fluid lipid phase transition a small number of the anionic dye molecules trapped within lipid vesicles are capable of traversing the lipid bilayer and establishing an electrical diffusion potential across the membrane. Further solute movement can then only occur with the concomitant permeation of ions which restore electrical balance. A significant flux of dye can be triggered by (a) increasing the permeability of the membrane to ions (for example by the addition of ionophores such as gramicidin, or by allowing the lipid to approach a phase transition) or by (b) adding lipophilic counterions such as tetraphenylborate or dinitrophenol to the system.  相似文献   

17.
We have employed both small unilamellar vesicles (SUV) and large unilamellar vesicles formed by the reverse phase evaporation technique (REV) to study the initial kinetics of membrane aggregation and fusion. Stopped flow measurements of the calcium-induced changes in the turbidity of SUV and REV, formed from 1:1 (mol/mol) mixtures of bovine phosphatidylserine (PS) and Escherichia coli phosphatidylethanolamine (PE), were used to follow particle aggregation. Simultaneous measurements of the fluorescence resonance energy transfer from N-(7-nitro2,1,3-benzoxadiazol-4-yl) (NBD)-PE to rhodamine (Rho)-PE incorporated into the vesicle bilayers established that 1) both initial aggregation and fusion can be described as a bimolecular process and 2) the rate-limiting step of membrane fusion is aggregation. Thus fusion takes place in the microsecond time domain. Parallel experiments, which simultaneously measured aggregation and the dequenching of encapsulated carboxyfluorescein (CF) in the presence and absence of antifluorescein antibodies in the suspension medium, established that the small unilamellar vesicles rapidly lose their contents of CF as they fuse. On the other hand, the first few cycles of fusion of the large unilamellar vesicles are nonleaky, but leakage develops within 1-2 s as the particles grow in size. Thus the results demonstrate that the SUV are poor models for the study of nonleaky fusion, while the REV must be carefully tested before unambiguous interpretation of fusion assays involving the formation of tight complexes (such as the terbium-dipicolinic assay) can be made. NBD-PE undergoes very rapid, Ca2+-promoted changes in quantum yield which can obscure the resonance energy transfer signals. Thus data from the NBD-PE/Rho-PE energy transfer pair must be carefully scrutinized for artifacts.  相似文献   

18.
Using fluorescent, anionic dyes such as carboxyfluorescein as model solutes, it is shown that the forces allowing such solutes to be retained within sealed lipid vesicles, against a large concentration gradient, can be primarily electrostatic in nature. At temperatures distant from that of the ordered-fluid lipid phase transition a small number of the anionic dye molecules trapped within lipid vesicles are capable of traversing the lipid bilayer and establishing an electrical diffusion potential across the membrane. Further solute movement can then only occur with the concomitant permeation of ions which restore electrical balance. A significant flux of dye can be triggered by (a) increasing the permeability of the membrane to ions (for example by the addition of ionophores such as gramicidin, or by allowing the lipid to approach a phase transition) or by (b) adding lipophilic counterions such as tetraphenylborate or dinitrophenol to the system.  相似文献   

19.
The kinetics of long-chain fatty acid (FA) transfer from three different donor systems to unilamellar egg phosphatidylcholine (EPC) vesicles containing the pH-sensitive fluorophore pyranine in the vesicle cavity were determined. The transfer of long-chain FA from three FA donors, FA vesicles, unilamellar EPC vesicles containing FA, and bovine serum albumin-FA complexes to pyranine-containing EPC vesicles is a true first-order process, indicating that the FA transfer proceeds through the aqueous phase and not through collisional contacts between the donor and acceptor. A collisional mechanism would be at least bimolecular, giving rise to second-order kinetics. Evidence from stopped-flow fluorescence spectroscopy using the pyranine assay (as developed by Kamp, F., and Hamilton, J. A. (1992) Proc. Natl. Acad. Sci. U.S.A. 89, 11367-11370) shows that the transverse or flip-flop motion of long-chain FA (from 14 to 22 C atoms) is immeasurably fast in both small and large unilamellar EPC vesicles and characterized by half-times t(1/2) < 5 ms. The rate-limiting step of FA transfer from these different donor systems to pyranine-containing EPC vesicles is the dissociation or desorption of the FA molecule from the donor. The desorption of the FA molecule is chain-length-dependent, confirming published data (Zhang et al. (1996) Biochemistry 35, 16055-16060): the first-order rate constant k(1) decreases by a factor of about 10 with elongation of the FA chain by two CH(2) groups. Similar rates of desorption are observed for the transfer of oleic acid from the three donors to pyranine-containing EPC vesicles with rate constants k(1) ranging from 0.4 to 1.3 s(-1). We also show that osmotically stressed, pyranine-containing EPC vesicles can give rise to artifacts. In the presence of a chemical potential gradient across the lipid bilayer of these vesicles, fast kinetic processes are observed with stopped-flow fluorescence spectroscopy which are probably due to electrostatic and/or osmotic effects.ne  相似文献   

20.
Summary ATP-dependent cell-free transfer of membrane constituents radiolabeled with [14C]acetate, primarily lipids, was demonstrated between isolated nuclei in suspension and purified Golgi apparatus immobilized on nitrocellulose strips prepared from garden pea (Pisum sativum) in the presence of pea cytosol. The ATP-dependent transfer correlated with the ability of the nuclear envelope to form 50–70 nm vesicles and blebs in an ATP-dependent manner. Specific transfer, transfer at 23°C minus transfer at 4°C, was approximately doubled by addition of ATP and was greater for peas germinated for 2 days than for peas germinated for 3 days. ATP plus cytosol-dependent transfer could not be demonstrated using radiolabeled pea nuclei as donor with purified endoplasmic reticulum, plasma membrane, nuclei, mitochondria or amyloplasts as acceptors. The results provide a second example, in addition to transfer between endoplasmic reticulum and Golgi apparatus, where ATP-and temperature-dependent transfer via 50–70 nm transition vesicles can be demonstrated in a cell-free system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号