首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Lysosomal membrane permeabilization (LMP) contributes to tissue involution, degenerative diseases, and cancer therapy. Its investigation has, however, been hindered by the lack of sensitive methods. Here, we characterize and validate the detection of galectin puncta at leaky lysosomes as a highly sensitive and easily manageable assay for LMP. LGALS1/galectin-1 and LGALS3/galectin-3 are best suited for this purpose due to their widespread expression, rapid translocation to leaky lysosomes and availability of high-affinity antibodies. Galectin staining marks individual leaky lysosomes early during lysosomal cell death and is useful when defining whether LMP is a primary or secondary cause of cell death. This sensitive method also reveals that cells can survive limited LMP and confirms a rapid formation of autophagic structures at the site of galectin puncta. Importantly, galectin staining detects individual leaky lysosomes also in paraffin-embedded tissues allowing us to demonstrate LMP in tumor xenografts in mice treated with cationic amphiphilic drugs and to identify a subpopulation of lysosomes that initiates LMP in involuting mouse mammary gland. The use of ectopic fluorescent galectins renders the galectin puncta assay suitable for automated screening and visualization of LMP in live cells and animals. Thus, the lysosomal galectin puncta assay opens up new possibilities to study LMP in cell death and its role in other cellular processes such as autophagy, senescence, aging, and inflammation.  相似文献   

2.
Cell sensitivity to oxidative stress is influenced by ferritin autophagy   总被引:1,自引:0,他引:1  
To test the consequences of lysosomal degradation of differently iron-loaded ferritin molecules and to mimic ferritin autophagy under iron-overload and normal conditions, J774 cells were allowed to endocytose heavily iron loaded ferritin, probably with some adventitious iron (Fe-Ft), or iron-free apo-ferritin (apo-Ft). When cells subsequently were exposed to a bolus dose of hydrogen peroxide, apo-Ft prevented lysosomal membrane permeabilization (LMP), whereas Fe-Ft enhanced LMP. A 4-h pulse of Fe-Ft initially increased oxidative stress-mediated LMP that was reversed after another 3h under standard culture conditions, suggesting that lysosomal iron is rapidly exported from lysosomes, with resulting upregulation of apo-ferritin that supposedly is autophagocytosed, thereby preventing LMP by binding intralysosomal redox-active iron. The obtained data suggest that upregulation of the stress protein ferritin is a rapid adaptive mechanism that counteracts LMP and ensuing apoptosis during oxidative stress. In addition, prolonged iron starvation was found to induce apoptotic cell death that, interestingly, was preceded by LMP, suggesting that LMP is a more general phenomenon in apoptosis than so far recognized. The findings provide new insights into aging and neurodegenerative diseases that are associated with enhanced amounts of cellular iron and show that lysosomal iron loading sensitizes to oxidative stress.  相似文献   

3.
In response to major cellular insults, a massive increase in lysosomal membrane permeability (LMP) leads to necrosis. Data now reveal that this potent lysosomal-mediated necrotic cell-death machinery can also be harnessed for complex physiological processes, such as post-lactation mammary gland involution.  相似文献   

4.
Our aim was to elucidate the physiological role of calpains (CAPN) in mammary gland involution. Both CAPN-1 and -2 were induced after weaning and its activity increased in isolated mitochondria and lysosomes. CAPN activation within the mitochondria could trigger the release of cytochrome c and other pro-apoptotic factors, whereas in lysosomes it might be essential for tissue remodeling by releasing cathepsins into the cytosol. Immunohistochemical analysis localized CAPNs mainly at the luminal side of alveoli. During weaning, CAPNs translocate to the lysosomes processing membrane proteins. To identify these substrates, lysosomal fractions were treated with recombinant CAPN and cleaved products were identified by 2D-DIGE. The subunit b(2) of the v-type H(+) ATPase is proteolyzed and so is the lysosomal-associated membrane protein 2a (LAMP2a). Both proteins are also cleaved in vivo. Furthermore, LAMP2a cleavage was confirmed in vitro by addition of CAPNs to isolated lysosomes and several CAPN inhibitors prevented it. Finally, in vivo inhibition of CAPN1 in 72-h-weaned mice decreased LAMP2a cleavage. Indeed, calpeptin-treated mice showed a substantial delay in tissue remodeling and involution of the mammary gland. These results suggest that CAPNs are responsible for mitochondrial and lysosomal membrane permeabilization, supporting the idea that lysosomal-mediated cell death is a new hallmark of mammary gland involution.  相似文献   

5.
Chen W  Li N  Chen T  Han Y  Li C  Wang Y  He W  Zhang L  Wan T  Cao X 《The Journal of biological chemistry》2005,280(49):40985-40995
Lysosomes have recently been identified as important apoptotic signal integrators in response to various stimuli. Here we report the functional characterization of LAPF, a novel lysosome-associated apoptosis-inducing protein containing PH and FYVE domains. LAPF is a representative of a new protein family, the Phafins (protein containing both PH and FYVE domains), which consists of 14 unidentified proteins from various species. Overexpression of LAPF in L929 cells induces apoptosis and also increases cell sensitivity to TNFalpha-induced apoptosis, concomitant with its translocation to lysosomes. Two mutants of LAPF, either lacking the PH or FYVE domain, failed to induce cell death and translocate to lysosomes, suggesting that both domains are required for its apoptosis-inducing activity and relocation. We demonstrate that LAPF may induce apoptosis via the following steps: LAPF translocation to lysosomes, lysosomal membrane permeabilization (LMP), release of cathepsin (cath) D and L, mitochondrial membrane permeabilization (MMP), release of apoptosis-inducing factor (AIF), and caspase-independent apoptosis. The cath D-specific inhibitor attenuates LAPF-induced apoptosis, indicating a pivotal role of lysosomes in LAPF-initiated apoptosis. We also demonstrate that the lysosomal pathway was employed in the typical apoptotic model in which high dose TNFalpha was used to stimulate L929 cells. Silencing of LAPF expression by small RNA interference protected L929 cells from hTNFalpha-induced apoptosis by impairing hTNFalpha-triggered LMP and MMP. Therefore, LAPF may launch caspase-independent apoptosis through the lysosomal-mitochondrial pathway.  相似文献   

6.
Mammary gland remodeling depends on gp130 signaling through Stat3 and MAPK   总被引:7,自引:0,他引:7  
The interleukin-6 (IL6) family of cytokines signals through the common receptor subunit gp130, and subsequently activates Stat3, MAPK, and PI3K. Stat3 controls cell death and tissue remodeling in the mouse mammary gland during involution, which is partially induced by IL6 and LIF. However, it is not clear whether Stat3 activation is mediated solely through the gp130 pathway or also through other receptors. This question was explored in mice carrying two distinct mutations in the gp130 gene; one that resulted in the complete ablation of gp130 and one that led to the loss of Stat3 binding sites (gp130Delta/Delta). Deletion of gp130 specifically from mammary epithelium resulted in a complete loss of Stat3 activity and resistance to tissue remodeling comparable to that seen in the absence of Stat3. A less profound delay of mammary tissue remodeling was observed in gp130Delta/Delta mice. Stat3 tyrosine and serine phosphorylation was still detected in these mice suggesting that Stat3 activation could be the result of gp130 interfacing with other receptors. Experiments in primary mammary epithelial cells and transfected COS-7 cells revealed a p44/42 MAPK and EGFR-dependent Stat3 activation. Moreover, the gp130-dependent EGFR activation was independent of EGF ligands, suggesting a cytoplasmic interaction and cross-talk between these two receptors. These experiments establish that two distinct Stat3 signaling pathways emanating from gp130 are utilized in mammary tissue.  相似文献   

7.
8.
Bisphosphonates (BPs) are potent inhibitors of osteoclast function, widely used to treat excessive bone resorption associated with bone metastases, that also have anti-tumor activity. Zoledronic acid (ZOL) represents a potential chemotherapeutic agent for the treatment of cancer. ZOL is the most potent nitrogen-containing BPs, and it inhibits cell growth and induces apoptosis in a variety of cancer cells. Recently we demonstrated that accumulation of isopentenyl pyrophosphate and the consequent formation of a new type of ATP analog (ApppI) after mevalonate pathway inhibition by nitrogen-containing BPs strongly correlates with ZOL-induced cell death in cancer cells in vitro. In this study we show that ZOL-induced apoptosis in HF28RA human follicular lymphoma cells occurs exclusively via the mitochondrial pathway, involves lysosomes, and is dependent on mevalonate pathway inhibition. To define the exact signaling pathway connecting them, we used modified HF28RA cell lines overexpressing either BclXL or dominant-negative caspase-9. In both mutant cells, mitochondrial and lysosomal membrane permeabilization (MMP and LMP) were totally prevented, indicating signaling between lysosomes and mitochondria and, additionally, an amplification loop for MMP and/or LMP regulated by caspase-9 in association with farnesyl pyrophosphate synthetase inhibition. Additionally, the lysosomal pathway in ZOL-induced apoptosis plays an additional/amplification role of the intrinsic pathway independently of caspase-3 activation. Moreover, we show a potential regulation by Bcl-XL and caspase-9 on cell cycle regulators of S-phase. Our findings provide a molecular basis for new strategies concomitantly targeting cell death pathways from multiple sites.  相似文献   

9.

Background

Neuroblastoma (NB) is the most frequently occurring solid tumor in children, and shows heterogeneous clinical behavior. Favorable tumors, which are usually detected by mass screening based on increased levels of catecholamines in urine, regress spontaneously via programmed cell death (PCD) or mature through differentiation into benign ganglioneuroma (GN). In contrast, advanced-type NB tumors often grow aggressively, despite intensive chemotherapy. Understanding the molecular mechanisms of PCD during spontaneous regression in favorable NB tumors, as well as identifying genes with a pro-death role, is a matter of urgency for developing novel approaches to the treatment of advanced-type NB tumors.

Principal Findings

We found that the expression of lysosomal associated protein multispanning transmembrane 5 (LAPTM5) was usually down-regulated due to DNA methylation in an NB cell-specific manner, but up-regulated in degenerating NB cells within locally regressing areas of favorable tumors detected by mass-screening. Experiments in vitro showed that not only a restoration of its expression but also the accumulation of LAPTM5 protein, was required to induce non-apoptotic cell death with autophagic vacuoles and lysosomal destabilization with lysosomal-membrane permeabilization (LMP) in a caspase-independent manner. While autophagy is a membrane-trafficking pathway to degrade the proteins in lysosomes, the LAPTM5-mediated lysosomal destabilization with LMP leads to an interruption of autophagic flux, resulting in the accumulation of immature autophagic vacuoles, p62/SQSTM1, and ubiqitinated proteins as substrates of autophagic degradation. In addition, ubiquitin-positive inclusion bodies appeared in degenerating NB cells.

Conclusions

We propose a novel molecular mechanism for PCD with the accumulation of autophagic vacuoles due to LAPTM5-mediated lysosomal destabilization. LAPTM5-induced cell death is lysosomal cell death with impaired autophagy, not cell death by autophagy, so-called autophagic cell death. Thus LAPTM5-mediated PCD is closely associated with the spontaneous regression of NBs and opens new avenues for exploring innovative clinical interventions for this tumor.  相似文献   

10.
Chang CP  Yang MC  Lei HY 《PloS one》2011,6(12):e28323
Interferon-gamma (IFN-γ), a potent Th1 cytokine with multiple biological functions, can induce autophagy to enhance the clearance of the invading microorganism or cause cell death. We have reported that Concanavalin A (Con A) can cause autophagic cell death in hepatocytes and induce both T cell-dependent and -independent acute hepatitis in immunocompetent and immunodeficient mice, respectively. Although IFN-γ is known to enhance liver injury in Con A-induced hepatitis, its role in autophagy-related hepatocyte death is not clear. In this study we report that IFN-γ can enhance Con A-induced autophagic flux and cell death in hepatoma cell lines. A necrotic cell death with increased lysosomal membrane permeabilization (LMP) is observed in Con A-treated hepatoma cells in the presence of IFN-γ. Cathepsin B and L were released from lysosomes to cause cell death. Furthermore, IFN-γ induces immunity related GTPase family M member 1(IRGM1) translocation to lysosomes and prolongs its activity in Con A-treated hepatoma cells. Knockdown of IRGM1 inhibits the IFN-γ/Con A-induced LMP change and cell death. Furthermore, IFN-γ(-/-) mice are resistant to Con A-induced autophagy-associated necrotic hepatocyte death. We conclude that IFN-γ enhances Con A-induced autophagic flux and causes an IRGM1-dependent lysosome-mediated necrotic cell death in hepatocytes.  相似文献   

11.
Glioblastoma (GBM) is one of the most malignant primary brain tumors and its prognosis is very poor. Lysosome-dependent cell death is mainly caused by lysosomal membrane permeabilization (LMP), a process in which the lysosome loses its membrane integrity and lysosomal contents are released into the cytosol. Lysosomotropic agent, a kind of compound that selectively accumulates in the lysosomes, is one of the most important inducers of LMP. As a newly-synthetic lysosomotropic agent, Lys05 showed efficient autophagy inhibiting and antitumor effect. But its mechanisms are not well illustrated. Here, we studied whether Lys05 has antiglioma activity. We found that Lys05 decreased cell viability and reduced cell growth of glioma U251 and LN229 cells. After Lys05 treatment, autophagic flux is inhibited and lysosome function is impaired. We also found that Lys05 caused LMP and mitochondrial depolarization. Finally, Lys05 increased radiosensitivity in an LMP-dependent manner. For the first time, our findings indicate that LMP contributes to radiosensitivity in GBM cells. Therefore, LMP inducer, Lys05 might be a promising compound in the treatment of GBM cells.  相似文献   

12.
The yeast apoptosis field emerged with the finding that key components of the apoptotic machinery are conserved in these simple eukaryotes. Thus it became possible to exploit these genetically tractable organisms to improve our understanding of the intricate mechanisms of cell death in higher eukaryotes and of severe human diseases associated with apoptosis dysfunctions. Early on, it was recognized that a mitochondria-mediated apoptotic pathway showing similarities to the mammalian intrinsic pathway was conserved in yeast. Recently, lysosomes have also emerged as central players in mammalian apoptosis. Following LMP (lysosomal membrane permeabilization), lysosomal proteases such as cathepsins B, D and L are released into the cytosol and can trigger a mitochondrial apoptotic cascade. CatD (cathepsin D) can also have anti-apoptotic effects in some cellular types and specific contexts. Nonetheless, the mechanisms underlying LMP and the specific role of cathepsins after their release into the cytosol remain poorly understood. We have recently shown that yeast vacuoles, membrane-bound acidic organelles, which share many similarities to plant vacuoles and mammalian lysosomes, are also involved in the regulation of apoptosis and that the vacuolar protease Pep4p, orthologue of the human CatD, is released from the vacuole into the cytosol in response to acetic acid. Here, we discuss how the conservation of cell-death regulation mechanisms in yeast by the lysosome-like organelle and mitochondria may provide new insights into the understanding of the complex interplay between the mitochondria and lysosome-mediated signalling routes during mammalian apoptosis.  相似文献   

13.

Background

Lung allografts contain large amounts of iron (Fe), which inside lung macrophages may promote oxidative lysosomal membrane permeabilization (LMP), cell death and inflammation. The macrolide antibiotic azithromycin (AZM) accumulates 1000-fold inside the acidic lysosomes and may interfere with the lysosomal pool of Fe.

Objective

Oxidative lysosomal leakage was assessed in lung macrophages from lung transplant recipients without or with AZM treatment and from healthy subjects. The efficiency of AZM to protect lysosomes and cells against oxidants was further assessed employing murine J774 macrophages.

Methods

Macrophages harvested from 8 transplant recipients (5 without and 3 with ongoing AZM treatment) and 7 healthy subjects, and J774 cells pre-treated with AZM, a high-molecular-weight derivative of the Fe chelator desferrioxamine or ammonium chloride were oxidatively stressed. LMP, cell death, Fe, reduced glutathione (GSH) and H-ferritin were assessed.

Results

Oxidant challenged macrophages from transplants recipients without AZM exhibited significantly more LMP and cell death than macrophages from healthy subjects. Those macrophages contained significantly more Fe, while GSH and H-ferritin did not differ significantly. Although macrophages from transplant recipients treated with AZM contained both significantly more Fe and less GSH, which would sensitize cells to oxidants, these macrophages resisted oxidant challenge well. The preventive effect of AZM on oxidative LMP and J774 cell death was 60 to 300 times greater than the other drugs tested.

Conclusions

AZM makes lung transplant macrophages and their lysososomes more resistant to oxidant challenge. Possibly, prevention of obliterative bronchiolitis in lung transplants by AZM is partly due to this action.  相似文献   

14.
Lysosomal membrane permeabilization (LMP) induced by oxidative stress has recently emerged as a prominent mechanism behind TNF cytotoxicity. This pathway relies on diffusion of hydrogen peroxide into lysosomes containing redox-active iron, accumulated by breakdown of iron-containing proteins and subcellular organelles. Upon oxidative lysosomal damage, LMP allows relocation to the cytoplasm of low mass iron and acidic hydrolases that contribute to DNA and mitochondrial damage, resulting in death by apoptosis or necrosis. Here we investigate the role of lysosomes and free iron in death of HTC cells, a rat hepatoma line, exposed to TNF following metallothionein (MT) upregulation. Iron-binding MT does not normally occur in HTC cells in significant amounts. Intracellular iron chelation attenuates TNF and cycloheximide (CHX)-induced LMP and cell death, demonstrating the critical role of this transition metal in mediating cytokine lethality. MT upregulation, combined with starvation-activated MT autophagy almost completely suppresses TNF and CHX toxicity, while impairment of both autophagy and MT upregulation by silencing of Atg7, and Mt1a and/or Mt2a, respectively, abrogates protection. Interestingly, MT upregulation by itself has little effect, while stimulated autophagy alone depresses cytokine toxicity to some degree. These results provide evidence that intralysosomal iron-catalyzed redox reactions play a key role in TNF and CHX-induced LMP and toxicity. The finding that chelation of intralysosomal iron achieved by autophagic delivery of MT, and to some degree probably of other iron-binding proteins as well, into the lysosomal compartment is highly protective provides a putative mechanism to explain autophagy-related suppression of death by TNF and CHX.  相似文献   

15.
16.
Cellular senescence is a stable proliferation arrest, a potent tumor suppressor mechanism, and a likely contributor to tissue aging. Cellular senescence involves extensive cellular remodeling, including of chromatin structure. Autophagy and lysosomes are important for recycling of cellular constituents and cell remodeling. Here we show that an autophagy/lysosomal pathway processes chromatin in senescent cells. In senescent cells, lamin A/C–negative, but strongly γ-H2AX–positive and H3K27me3-positive, cytoplasmic chromatin fragments (CCFs) budded off nuclei, and this was associated with lamin B1 down-regulation and the loss of nuclear envelope integrity. In the cytoplasm, CCFs were targeted by the autophagy machinery. Senescent cells exhibited markers of lysosomal-mediated proteolytic processing of histones and were progressively depleted of total histone content in a lysosome-dependent manner. In vivo, depletion of histones correlated with nevus maturation, an established histopathologic parameter associated with proliferation arrest and clinical benignancy. We conclude that senescent cells process their chromatin via an autophagy/lysosomal pathway and that this might contribute to stability of senescence and tumor suppression.  相似文献   

17.
18.
(−)-Epigallocatechin-3-gallate (EGCG) is the most extensive studied tea polyphenol for its anti-cancer function. In this study, we report a novel mechanism of action for EGCG-mediated cell death by identifying the critical role of lysosomal membrane permeabilization (LMP). First, EGCG-induced cell death in human cancer cells (both HepG2 and HeLa) was found to be caspase-independent and accompanied by evident cytosolic vacuolization, only observable when cells were treated in serum-free medium. The cytosolic vacuolization observed in EGCG-treated cells was most probably caused by lysosomal dilation. Interestingly, EGCG was able to disrupt autophagic flux at the degradation stage by impairment of lysosomal function, and EGCG-induced cell death was independent of Atg5 or autophagy. The key finding of this study is that EGCG is able to trigger LMP, as evidenced by Lyso-Tracker Red staining, cathepsin D cytosolic translocation and cytosolic acidification. Consistently, a lysosomotropic agent, chloroquine, effectively rescues the cell death via suppressing LMP-caused cytosolic acidification. Lastly, we found that EGCG promotes production of intracellular ROS upstream of LMP and cell death, as evidenced by increased level of ROS in cells treated with EGCG and the protective effects of antioxidant N-acetylcysteine (NAC) against EGCG-mediated LMP and cell death. Taken together, data from our study reveal a novel mechanism underlying EGCG-induced cell death involving ROS and LMP. Therefore, understanding this lysosome-associated cell death pathway shed new lights on the anti-cancer effects of EGCG.  相似文献   

19.
Upon apoptotic stimuli, lysosomal proteases, including cathepsins and chymotrypsin, are released into cytosol due to lysosomal membrane permeabilization (LMP), where they trigger apoptosis via the lysosomal-mitochondrial pathway of apoptosis. Herein, the mechanism of LMP was investigated. We found that caspase 8-cleaved Bid (tBid) could result in LMP directly. Although Bax or Bak might modestly enhance tBid-triggered LMP, they are not necessary for LMP. To study this further, large unilamellar vesicles (LUVs), model membranes mimicking the lipid constitution of lysosomes, were used to reconstitute the membrane permeabilization process in vitro. We found that phosphatidic acid (PA), one of the major acidic phospholipids found in lysosome membrane, is essential for tBid-induced LMP. PA facilitates the insertion of tBid deeply into lipid bilayers, where it undergoes homo-oligomerization and triggers the formation of highly curved nonbilayer lipid phases. These events induce LMP via pore formation mechanisms because encapsulated fluorescein-conjugated dextran (FD)-20 was released more significantly than FD-70 or FD-250 from LUVs due to its smaller molecular size. On the basis of these data, we proposed tBid-PA interactions in the lysosomal membranes form lipidic pores and result in LMP. We further noted that chymotrypsin-cleaved Bid is more potent than tBid at binding to PA, inserting into the lipid bilayer, and promoting LMP. This amplification mechanism likely contributes to the culmination of apoptotic signaling.  相似文献   

20.
Neuronal cell loss underlies the pathological decline in cognition and memory associated with Alzheimer disease (AD). Recently, targeting the endocannabinoid system in AD has emerged as a promising new approach to treatment. Studies have identified neuroprotective roles for endocannabinoids against key pathological events in the AD brain, including cell death by apoptosis. Elucidation of the apoptotic pathway evoked by β-amyloid (Aβ) is thus important for the development of therapeutic strategies that can thwart Aβ toxicity and preserve cell viability. We have previously reported that lysosomal membrane permeabilization plays a distinct role in the apoptotic pathway initiated by Aβ. In the present study, we provide evidence that the endocannabinoid system can stabilize lysosomes against Aβ-induced permeabilization and in turn sustain cell survival. We report that endocannabinoids stabilize lysosomes by preventing the Aβ-induced up-regulation of the tumor suppressor protein, p53, and its interaction with the lysosomal membrane. We also provide evidence that intracellular cannabinoid type 1 receptors play a role in stabilizing lysosomes against Aβ toxicity and thus highlight the functionality of these receptors. Given the deleterious effect of lysosomal membrane permeabilization on cell viability, stabilization of lysosomes with endocannabinoids may represent a novel mechanism by which these lipid modulators confer neuroprotection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号