首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.

Background

Pancreatic cancer is a highly malignant disease with an extremely poor prognosis. Histone deacetylase inhibitors (HDACIs) have shown promising antitumor activities against preclinical models of pancreatic cancer, either alone or in combination with chemotherapeutic agents. In this study, we sought to identify clinically relevant histone deacetylases (HDACs) to guide the selection of HDAC inhibitors (HDACIs) tailored to the treatment of pancreatic cancer.

Methodology

HDAC expression in seven pancreatic cancer cell lines and normal human pancreatic ductal epithelial cells was determined by Western blotting. Antitumor interactions between class I- and class II-selective HDACIs were determined by MTT assays and standard isobologram/CompuSyn software analyses. The effects of HDACIs on cell death, apoptosis and cell cycle progression, and histone H4, alpha-tubulin, p21, and γH2AX levels were determined by colony formation assays, flow cytometry analysis, and Western blotting, respectively.

Results

The majority of classes I and II HDACs were detected in the pancreatic cancer cell lines, albeit at variable levels. Treatments with MGCD0103 (a class I-selective HDACI) resulted in dose-dependent growth arrest, cell death/apoptosis, and cell cycle arrest in G2/M phase, accompanied by induction of p21 and DNA double-strand breaks (DSBs). In contrast, MC1568 (a class IIa-selective HDACI) or Tubastatin A (a HDAC6-selective inhibitor) showed minimal effects. When combined simultaneously, MC1568 significantly enhanced MGCD0103-induced growth arrest, cell death/apoptosis, and G2/M cell cycle arrest, while Tubastatin A only synergistically enhanced MGCD0103-induced growth arrest. Although MC1568 or Tubastatin A alone had no obvious effects on DNA DSBs and p21 expression, their combination with MGCD0103 resulted in cooperative induction of p21 in the cells.

Conclusion

Our results suggest that classes I and II HDACs are potential therapeutic targets for treating pancreatic cancer. Accordingly, treating pancreatic cancer with pan-HDACIs may be more beneficial than class- or isoform-selective inhibitors.  相似文献   

2.
3.
Wu LM  Yang Z  Zhou L  Zhang F  Xie HY  Feng XW  Wu J  Zheng SS 《PloS one》2010,5(12):e14460

Background

Recent studies have shown that high expression levels of class I histone deacetylases (HDACs) correlate with malignant phenotype and poor prognosis in some human tumors. However, the expression patterns and prognostic role of class I HDAC isoforms in hepatocellular carcinoma (HCC) remain unclear.

Methodology/Principal Findings

The expression patterns and clinical significance of class I HDAC isoforms were assessed by immunohistochemistry in a cohort of 43 hepatitis B virus-associated HCC patients treated with liver transplantation. In addition, the effects of HDAC inhibition on HCC cell behavior were investigated by knockdown of the HDAC isoform with short interfering RNA. Class I HDACs were highly expressed in a subset of HCCs with positivity for HDAC1 in 51.2%, HDAC2 in 48.8%, and HDAC3 in 32.6% of cases. The expression levels of HDAC isoforms were significantly associated with the proliferation index of HCC. Kaplan-Meier curves showed that a high expression level of HDAC2 or HDAC3 implicated significantly reduced recurrence-free survival. Cox proportional hazards model analysis revealed HDAC3 overexpression was an unfavorable independent prognostic factor (P = 0.002; HR 3.907). In vitro, inhibition of HDAC2 and HDAC3, but not HDAC1, suppressed proliferation and the invasiveness of liver cancer cells.

Conclusions/Significance

Our findings demonstrate that HDAC3 plays a significant role in regulating tumor cell proliferation and invasion, and it could be served as a candidate biomarker for predicting the recurrence of hepatitis B virus-associated HCC following liver transplantation and a potential therapeutic target.  相似文献   

4.

Background

Peripheral T-cell lymphomas (PTCLs) are often aggressive tumors and resistant to conventional chemotherapy. Dysregulation of extrinsic apoptosis plays an important role on tumor cell sensitivity to chemotherapeutic agents. Cellular FLICE inhibitory protein (c-FLIP) is a key regulator of extrinsic apoptotic pathway.

Methods

c-FLIP expression was assessed by real-time PCR and compared according to clinical parameters in patients with PTCLs. The relation of c-FLIP to tumor cell apoptosis mediated by histone deacetylases inhibitors (HDACIs) and the possible mechanism were examined in T-lymphoma cell lines and in a murine xenograft model.

Results

c-FLIP was overexpressed and associated with decreased tumor TRAIL/DR5 expression, elevated serum lactate dehydrogenase level and high-risk International Prognostic Index of the patients. In vitro, molecular silencing of c-FLIP by specific small-interfering RNA increased TRAIL/DR5 expression, enhanced T-lymphoma cell apoptosis and sensitized cells to chemotherapeutic agents. However, HDACIs valproic acid (VPA) and suberoylanilide hydroxamic acid (SAHA) could downregulate c-FLIP expression and triggered extrinsic apoptosis of T-lymphoma cells, through inhibiting NF-κB signaling and interrupting P50 interaction with c-FLIP promoter. As Class I HDACIs, both VPA and SAHA inhibited HDAC1, resulting in P50 inactivation and c-FLIP downregulation. In vivo, oral VPA treatment significantly retarded tumor growth and induced in situ apoptosis, consistent with inhibition of HDAC1/P50/c-FLIP axis and increase of TRAIL/DR5 expression.

Conclusions

c-FLIP overexpression in PTCLs protected tumor cells from extrinsic apoptosis and contributed to tumor progression. Although linking to chemoresistance, c-FLIP indicated tumor cell sensitivity to HDACIs, providing a potential biomarker of targeting apoptosis in treating PTCLs.
  相似文献   

5.

Background

Friedreich''s ataxia (FRDA), the most common recessive ataxia in Caucasians, is due to severely reduced levels of frataxin, a highly conserved protein, that result from a large GAA triplet repeat expansion within the first intron of the frataxin gene (FXN). Typical marks of heterochromatin are found near the expanded GAA repeat in FRDA patient cells and mouse models. Histone deacetylase inhibitors (HDACIs) with a pimelic diphenylamide structure and HDAC3 specificity can decondense the chromatin structure at the FXN gene and restore frataxin levels in cells from FRDA patients and in a GAA repeat based FRDA mouse model, KIKI, providing an appealing approach for FRDA therapeutics.

Methodology/Principal Findings

In an effort to further improve the pharmacological profile of pimelic diphenylamide HDACIs as potential therapeutics for FRDA, we synthesized additional compounds with this basic structure and screened them for HDAC3 specificity. We characterized two of these compounds, 136 and 109, in FRDA patients'' peripheral blood lymphocytes and in the KIKI mouse model. We tested their ability to upregulate frataxin at a range of concentrations in order to determine a minimal effective dose. We then determined in both systems the duration of effect of these drugs on frataxin mRNA and protein, and on total and local histone acetylation. The effects of these compounds exceeded the time of direct exposure in both systems.

Conclusions/Significance

Our results support the pre-clinical development of a therapeutic approach based on pimelic diphenylamide HDACIs for FRDA and provide information for the design of future human trials of these drugs, suggesting an intermittent administration of the drug.  相似文献   

6.

Introduction

Older patients with acute myeloid leukemia (AML) experience short survival despite intensive chemotherapy. Azacitidine has promising activity in patients with low proliferating AML. The aim of this dose-finding part of this trial was to evaluate feasibility and safety of azacitidine combined with a cytarabine- and daunorubicin-based chemotherapy in older patients with AML.

Trial Design

Prospective, randomised, open, phase II trial with parallel group design and fixed sample size.

Patients and Methods

Patients aged 61 years or older, with untreated acute myeloid leukemia with a leukocyte count of <20,000/µl at the time of study entry and adequate organ function were eligible. Patients were randomised to receive azacitidine either 37.5 (dose level 1) or 75 mg/sqm (dose level 2) for five days before each cycle of induction (7+3 cytarabine plus daunorubicine) and consolidation (intermediate-dose cytarabine) therapy. Dose-limiting toxicity was the primary endpoint.

Results

Six patients each were randomised into each dose level and evaluable for analysis. No dose-limiting toxicity occurred in either dose level. Nine serious adverse events occurred in five patients (three in the 37.5 mg, two in the 75 mg arm) with two fatal outcomes. Two patients at the 37.5 mg/sqm dose level and four patients at the 75 mg/sqm level achieved a complete remission after induction therapy. Median overall survival was 266 days and median event-free survival 215 days after a median follow up of 616 days.

Conclusions

The combination of azacitidine 75 mg/sqm with standard induction therapy is feasible in older patients with AML and was selected as an investigational arm in the randomised controlled part of this phase-II study, which is currently halted due to an increased cardiac toxicity observed in the experimental arm.

Trial Registration

This trial is registered at clinical trials.gov (identifier: NCT00915252).  相似文献   

7.

Objectives

Copper oxide nanoparticles (CuO NPs) promoting anticancer activity may be due to the regulation of various classes of histone deacetylases (HDACs).

Results

Green-synthesized CuO NPs significantly arrested total HDAC level and also suppressed class I, II and IV HDACs mRNA expression in A549 cells. A549 cells treated with CuO NPs downregulated oncogenes and upregulated tumor suppressor protein expression. CuO NPs positively regulated both mitochondrial and death receptor-mediated apoptosis caspase cascade pathway in A549 cells.

Conclusion

Green-synthesized CuO NPs inhibited HDAC and therefore shown apoptosis mediated anticancer activity in A549 lung cancer cell line.
  相似文献   

8.
9.
10.

Background

Use of peripheral blood- or bone marrow-derived progenitors for ischemic heart repair is a feasible option to induce neo-vascularization in ischemic tissues. These cells, named Endothelial Progenitors Cells (EPCs), have been extensively characterized phenotypically and functionally. The clinical efficacy of cardiac repair by EPCs cells remains, however, limited, due to cell autonomous defects as a consequence of risk factors. The devise of “enhancement” strategies has been therefore sought to improve repair ability of these cells and increase the clinical benefit.

Principal Findings

Pharmacologic inhibition of histone deacetylases (HDACs) is known to enhance hematopoietic stem cells engraftment by improvement of self renewal and inhibition of differentiation in the presence of mitogenic stimuli in vitro. In the present study cord blood-derived CD34+ were pre-conditioned with the HDAC inhibitor Valproic Acid. This treatment affected stem cell growth and gene expression, and improved ischemic myocardium protection in an immunodeficient mouse model of myocardial infarction.

Conclusions

Our results show that HDAC blockade leads to phenotype changes in CD34+ cells with enhanced self renewal and cardioprotection.  相似文献   

11.

Background

The natural phloroglucinol hyperforin HF displays anti-inflammatory and anti-tumoral properties of potential pharmacological interest. Acute myeloid leukemia (AML) cells abnormally proliferate and escape apoptosis. Herein, the effects and mechanisms of purified HF on AML cell dysfunction were investigated in AML cell lines defining distinct AML subfamilies and primary AML cells cultured ex vivo.

Methodology and Results

HF inhibited in a time- and concentration-dependent manner the growth of AML cell lines (U937, OCI-AML3, NB4, HL-60) by inducing apoptosis as evidenced by accumulation of sub-G1 population, phosphatidylserine externalization and DNA fragmentation. HF also induced apoptosis in primary AML blasts, whereas normal blood cells were not affected. The apoptotic process in U937 cells was accompanied by downregulation of anti-apoptotic Bcl-2, upregulation of pro-apoptotic Noxa, mitochondrial membrane depolarization, activation of procaspases and cleavage of the caspase substrate PARP-1. The general caspase inhibitor Z-VAD-fmk and the caspase-9- and -3-specific inhibitors, but not caspase-8 inhibitor, significantly attenuated apoptosis. HF-mediated apoptosis was associated with dephosphorylation of active Akt1 (at Ser473) and Akt1 substrate Bad (at Ser136) which activates Bad pro-apoptotic function. HF supppressed the kinase activity of Akt1, and combined treatment with the allosteric Akt1 inhibitor Akt-I-VIII significantly enhanced apoptosis of U937 cells.

Significance

Our data provide new evidence that HF''s pro-apoptotic effect in AML cells involved inhibition of Akt1 signaling, mitochondria and Bcl-2 members dysfunctions, and activation of procaspases -9/-3. Combined interruption of mitochondrial and Akt1 pathways by HF may have implications for AML treatment.  相似文献   

12.
13.

Background

The induction of hepatic stellate cell (HSC) apoptosis has potential as a potent strategy to diminish the progression of liver fibrosis. Previous studies have demonstrated the ability of soluble egg antigens (SEA) from schistosomes to inhibit HSC activation and to induce apoptosis in vitro. In this study, we aimed to explore the mechanism of SEA-induced apoptosis in HSCs.

Methodology/Principal Findings

In this study, we found that SEA could upregulate p53 and DR5 and downregulate the p-Akt. The apoptosis of HSCs induced by SEA could be reduced in HSCs that were treated with p53-specific siRNA and in HSCs that were treated with DR5-specific shRNA. In addition, GW501516, which enhances the expression of Akt, could also decrease the SEA-induced HSC apoptosis. We also found that the increased expression of p53 and DR5 induced by SEA through Mdm2 were reduced by GW501516.

Conclusions/Significance

Our data suggest that SEA can induce HSC apoptosis by downregulating Akt expression and upregulating p53-dependent DR5 expression.  相似文献   

14.
15.

Background

Single cell network profiling (SCNP) utilizing flow cytometry measures alterations in intracellular signaling responses. Here SCNP was used to characterize Acute Myeloid Leukemia (AML) disease subtypes based on survival, DNA damage response and apoptosis pathways.

Methodology and Principal Findings

Thirty four diagnostic non-M3 AML samples from patients with known clinical outcome were treated with a panel of myeloid growth factors and cytokines, as well as with apoptosis-inducing agents. Analysis of induced Jak/Stat and PI3K pathway responses in blasts from individual patient samples identified subgroups with distinct signaling profiles that were not seen in the absence of a modulator. In vitro exposure of patient samples to etoposide, a DNA damaging agent, revealed three distinct “DNA damage response (DDR)/apoptosis” profiles: 1) AML blasts with a defective DDR and failure to undergo apoptosis; 2) AML blasts with proficient DDR and failure to undergo apoptosis; 3) AML blasts with proficiency in both DDR and apoptosis pathways. Notably, AML samples from clinical responders fell within the “DDR/apoptosis” proficient profile and, as well, had low PI3K and Jak/Stat signaling responses. In contrast, samples from clinical non responders had variable signaling profiles often with in vitro apoptotic failure and elevated PI3K pathway activity. Individual patient samples often harbored multiple, distinct, leukemia-associated cell populations identifiable by their surface marker expression, functional performance of signaling pathway in the face of cytokine or growth factor stimulation, as well as their response to apoptosis-inducing agents.

Conclusions and Significance

Characterizing and tracking changes in intracellular pathway profiles in cell subpopulations both at baseline and under therapeutic pressure will likely have important clinical applications, potentially informing the selection of beneficial targeted agents, used either alone or in combination with chemotherapy.  相似文献   

16.

Background

Adult mesenchymal stem cells (MSCs) can be maintained over extended periods of time before activation and differentiation. Little is known about the programs that sustain the survival of these cells.

Principal Findings

Undifferentiated adult human MSCs (hMSCs) did not undergo apoptosis in response to different cell death inducers. Conversely, the same inducers can readily induce apoptosis when hMSCs are engaged in the early stages of differentiation. The survival of undifferentiated cells is linked to the expression of Bcl-Xl and Bcl-2 in completely opposite ways. Bcl-Xl is expressed at similar levels in undifferentiated and differentiated hMSCs while Bcl-2 is expressed only in differentiated cells. In undifferentiated hMSCs, the down-regulation of Bcl-Xl is associated with an increased sensitivity to apoptosis while the ectopic expression of Bcl-2 induced apoptosis. This apoptosis is linked to the presence of cytoplasmic Nur 77 in undifferentiated hMSCs.

Significance

In hMSCs, the expression of Bcl-2 depends on cellular differentiation and can be either pro- or anti-apoptotic. Bcl-Xl, on the other hand, exhibits an anti-apoptotic activity under all conditions.  相似文献   

17.

Background

Although Imatinib mesylate has revolutionized the treatment of chronic myeloid leukemia, some patients develop resistance with progression of leukemia. Alternative or additional targeting of signalling pathways deregulated in Bcr-Abl-driven chronic myeloid leukemia may provide a feasible option for improving clinical response and overcoming resistance.

Results

In this study, we investigate ability of CR8 isomers (R-CR8 and S-CR8) and MR4, three derivatives of the cyclin-dependent kinases (CDKs) inhibitor Roscovitine, to exert anti-leukemic activities against chronic myeloid leukemia in vitro and then, we decipher their mechanisms of action. We show that these CDKs inhibitors are potent inducers of growth arrest and apoptosis of both Imatinib-sensitive and –resistant chronic myeloid leukemia cell lines. CR8 and MR4 induce dose-dependent apoptosis through mitochondrial pathway and further caspases 8/10 and 9 activation via down-regulation of short-lived survival and anti-apoptotic factors Mcl-1, XIAP and survivin which are strongly implicated in survival of Bcr-Abl transformed cells.

Conclusions

These results suggest that CDK inhibitors may constitute a complementary approach to treat chronic myeloid leukemia.

Electronic supplementary material

The online version of this article (doi:10.1186/s12929-015-0163-x) contains supplementary material, which is available to authorized users.  相似文献   

18.
19.
Y Guo  F Jiang  L Peng  J Zhang  F Geng  J Xu  C Zhen  X Shen  S Tong 《PloS one》2012,7(7):e42232

Background

Asthma is a serious global health problem. However, few studies have investigated the relationship between cold spells and pediatric outpatient visits for asthma.

Objective

To examine the association between cold spells and pediatric outpatient visits for asthma in Shanghai, China.

Methods

We collected daily data on pediatric outpatient visits for asthma, mean temperature, relative humidity, and ozone from Shanghai between 1 January 2007 and 31 December 2009. We defined cold spells as four or more consecutive days with temperature below the 5th percentile of temperature during 2007–2009. We used a Poisson regression model to examine the impact of temperature on pediatric outpatient visits for asthma in cold seasons during 2007 and 2009. We examined the effect of cold spells on asthma compared with non-cold spell days.

Results

There was a significant relationship between cold temperatures and pediatric outpatient visits for asthma. The cold effects on children''s asthma were observed at different lags. The lower the temperatures, the higher the risk for asthma attacks among children.

Conclusion

Cold temperatures, particularly cold spells, significantly increase the risk of pediatric outpatient visits for asthma. The findings suggest that asthma children need to be better protected from cold effects in winter.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号