首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Embryonic stem (ES) cells are pluripotent cells capable of unlimited self-renewal and differentiation into the three embryonic germ layers under appropriate conditions. Mechanisms for control of the early period of differentiation, involving exit from the pluripotent state and lineage commitment, are not well understood. An emerging concept is that epigenetic histone modifications may play a role during this early period. We have found that upon differentiation of mouse ES cells by removal of the cytokine leukemia inhibitory factor, there is a global increase in coupled histone H3 phosphorylation (Ser-10)-acetylation (Lys-14) (H3 phosphoacetylation). We show that this occurs through activation of both the extracellular signal-regulated kinase (ERK) and p38 MAPK signaling pathways. Early ES cell differentiation is delayed using pharmacological inhibitors of the ERK and p38 pathways. One common point of convergence of these pathways is the activation of the mitogen- and stress-activated protein kinase 1 (MSK1). We show here that MSK1 is the critical mediator of differentiation-induced H3 phosphoacetylation using both the chemical inhibitor H89 and RNA interference. Interestingly, inhibition of H3 phosphoacetylation also alters gene expression during early differentiation. These results point to an important role for both epigenetic histone modifications and kinase pathways in modulating early ES differentiation.  相似文献   

4.
5.
6.
Chromatin decondensation and nuclear reprogramming by nucleoplasmin   总被引:1,自引:0,他引:1       下载免费PDF全文
Somatic cell nuclear cloning has repeatedly demonstrated striking reversibility of epigenetic regulation of cell differentiation. Upon injection into eggs, the donor nuclei exhibit global chromatin decondensation, which might contribute to reprogramming the nuclei by derepressing dormant genes. Decondensation of sperm chromatin in eggs is explained by the replacement of sperm-specific histone variants with egg-type histones by the egg protein nucleoplasmin (Npm). However, little is known about the mechanisms of chromatin decondensation in somatic nuclei that do not contain condensation-specific histone variants. Here we found that Npm could widely decondense chromatin in undifferentiated mouse cells without overt histone exchanges but with specific epigenetic modifications that are relevant to open chromatin structure. These modifications included nucleus-wide multiple histone H3 phosphorylation, acetylation of Lys 14 in histone H3, and release of heterochromatin proteins HP1beta and TIF1beta from the nuclei. The protein kinase inhibitor staurosporine inhibited chromatin decondensation and these epigenetic modifications with the exception of H3 acetylation, potentially linking these chromatin events. At the functional level, Npm pretreatment of mouse nuclei facilitated activation of four oocyte-specific genes from the nuclei injected into Xenopus laevis oocytes. Future molecular elucidation of chromatin decondensation by Npm will significantly contribute to our understanding of the plasticity of cell differentiation.  相似文献   

7.
Histone modifications are thought to serve as epigenetic markers that mediate dynamic changes in chromatin structure and regulation of gene expression. As a model system for understanding epigenetic silencing, X chromosome inactivation has been previously linked to a number of histone modifications including methylation and hypoacetylation. In this study, we provide evidence that supports H2A ubiquitination as a novel epigenetic marker for the inactive X chromosome (Xi) and links H2A ubiquitination to initiation of X inactivation. We found that the H2A-K119 ubiquitin E3 ligase Ring1b, a Polycomb group protein, is enriched on Xi in female trophoblast stem (TS) cells as well as differentiating embryonic stem (ES) cells. Consistent with Ring1b mediating H2A ubiquitination, ubiquitinated H2A (ubH2A) is also enriched on the Xi of both TS and ES cells. We demonstrate that the enrichment of Ring1b and ubH2A on Xi is transient during TS and ES cell differentiation, suggesting that the Ring1b and ubH2A are involved in the initiation of both imprinted and random X inactivation. Furthermore, we showed that the association of Ring1b and ubH2A with Xi is mitotically stable in non-differentiated TS cells.  相似文献   

8.
9.
10.
11.
The differentiation of monocytes into macrophages and dendritic cells involves mechanisms for activation of the innate immune system in response to inflammatory stimuli, such as pathogen infection and environmental cues. Epigenetic reprogramming is thought to play an important role during monocyte differentiation. Complementary to cell surface markers, the characterization of monocytic cell lineages by mass spectrometry based protein/histone expression profiling opens a new avenue for studying immune cell differentiation. Here, we report the application of mass spectrometry and bioinformatics to identify changes in human monocytes during their differentiation into macrophages and dendritic cells. Our data show that linker histone H1 proteins are significantly down-regulated during monocyte differentiation. Although highly enriched H3K9-methyl/S10-phos/K14-acetyl tri-modification forms of histone H3 were identified in monocytes and macrophages, they were dramatically reduced in dendritic cells. In contrast, histone H4 K16 acetylation was found to be markedly higher in dendritic cells than in monocytes and macrophages. We also found that global hyperacetylation generated by the nonspecific histone deacetylase HDAC inhibitor Apicidin induces monocyte differentiation. Together, our data suggest that specific regulation of inter- and intra-histone modifications including H3 K9 methylation, H3 S10 phosphorylation, H3 K14 acetylation, and H4 K16 acetylation must occur in concert with chromatin remodeling by linker histones for cell cycle progression and differentiation of human myeloid cells into macrophages and dendritic cells.The linker histone H1s “beads-on-a-string” structure aids chromatin folding into highly compacted 30 nm chromatin fibers (1). Previous studies demonstrated that histone H1s are differentially expressed and incorporated into chromatin during embryonic stem cell differentiation and reprogramming to pluripotency (2). More than being accumulated after differentiation, the three histone H1 isoforms, H1.3, H1.4, and H1.5, are required for embryonic stem cell differentiation as demonstrated by in vivo H1.3/H1.4/H1.5 triple null experiments (3). Histone H1 null cells exhibit altered nucleosome architecture (4) which may cause epigenetic reprogramming (2), specific changes in gene regulation including repression of pluripotency gene Oct4 expression (3, 5), and cell growth (6, 7). In human blood or bone marrow, hematopoietic stem cells give rise to two major pluripotent progenitor cell lineages, myeloid and lymphoid progenitors, from which are derived mature blood cells including erythrocytes, megakaryocytes, and cells of the myeloid and lymphoid lineages. However, epigenetic regulation or reprogramming in this complex differentiation system has not yet been fully understood. As a follow up to our proteomics studies on epigenetic networks in U937 cell differentiation (8), we have performed proteomics studies on primary human monocyte differentiation. In this report, using proteomics and bioinformatics tools in lieu of microarray analysis of gene expression, we describe the presence of unique protein expression profiles, specifically the linker histones, in monocyte differentiation into macrophages and dendritic cells.Differentiation of monocytes from primary leukemia cell lines or from human peripheral blood mononuclear cells into macrophages or macrophage-like cells using different differentiating reagents has been frequently used as a mimic model for understanding the process of innate and adaptive immune responses to inflammatory stimuli, viral infection, and environmental cues. Either phorbol myristate acetate (PMA)1 or granulocyte-macrophage colony-stimulating factor (GMCSF) has normally been used for differentiation of monocytes, though the former is generally for differentiation of primary monocytic cell lines, while the latter for differentiation of human blood monocytes (911). In our experiments, CD14+ monocytes were treated with PMA, PMA + ionomycin, GMCSF, or GMCSF + IL4. After treatment, monocyte differentiation into macrophages or dendritic cells was monitored by mass spectrometry and bioinformatics analyses. We report here that monocytic cell lineages can be distinguished based on protein expression profiles, specifically, histone H1.4 and H1.5 expression patterns. We identified H3K9-methyl/S10-phos/K14-acetyl tri-modification forms in the monocyte and macrophages but not in dendritic cells. In addition, histone H4 K16 acetylation was low in monocytes and macrophages but significantly higher in dendritic cells. Our findings suggest a switch from H3 tri-modification and linker histone expression to histone H4 K16 acetylation occurs during the monocyte-to-dendritic cell transition.  相似文献   

12.
13.
14.
15.
组蛋白修饰调节机制的研究进展   总被引:2,自引:0,他引:2  
表观遗传学涉及到DNA甲基化、组蛋白修饰、染色体重塑和非编码RNA调控等内容,其中组蛋白修饰包括组蛋白的乙酰化、磷酸化、甲基化、泛素化及ADP核糖基化等,这些多样化的修饰以及它们时间和空间上的组合与生物学功能的关系又可作为一种重要的表观标志或语言,因而被称为“组蛋白密码”.相同组蛋白残基的磷酸化与去磷酸化、乙酰化与去乙酰化、甲基化与去甲基化等,以及不同组蛋白残基的磷酸化与乙酰化、泛素化与甲基化、磷酸化与甲基化等组蛋白修 饰之间既相互协同又互相拮抗,形成了一个复杂的调节网络.对组蛋白修饰内在调节机制的研究将丰富“组蛋白密码”的内涵.  相似文献   

16.
17.
18.
19.
Sequences proximal to transgene integration sites are able to regulate transgene expression, resulting in complex position effect variegation. Position effect variegation can cause differences in epigenetic modifications, such as DNA methylation and histone acetylation. However, it is not known which factor, position effect or epigenetic modification, plays a more important role in the regulation of transgene expression. We analyzed transgene expression patterns and epigenetic modifications of transgenic pigs expressing green fluorescent protein, driven by the cytomegalovirus (CMV) promoter. DNA hypermethylation and loss of acetylation of specific histone H3 and H4 lysines, except H4K16 acetylation in the CMV promoter, were consistent with a low level of transgene expression. Moreover, the degree of DNA methylation and histone H3/H4 acetylation in the promoter region depended on the integration site; consequently, position effect variegation caused variations in epigenetic modifications. The transgenic pig fibroblast cell lines were treated with DNA methyltransferase inhibitor 5-Aza-2'-deoxycytidine and/or histone deacetylase inhibitor trichostatin A. Transgene expression was promoted by reversing the DNA hypermethylation and histone hypoacetylation status. The differences in DNA methylation and histone acetylation in the CMV promoter region in these cell lines were not significant; however, significant differences in transgene expression were detected, demonstrating that variegation of transgene expression is affected by the integration site. We conclude that in this pig model, position effect variegation affects transgene expression.  相似文献   

20.
Epigenetic organization represents an important regulation mechanism of gene expression. In this work, we show that the mouse p53 gene is organized into two epigenetic domains. The first domain is fully unmethylated, associated with histone modifications in active genes, and organized in a nucleosome-free conformation that is deficient in H2a/H2b, whereas the second domain is fully methylated, associated with deacetylated histones, and organized in a nucleosomal structure. In mitotic cells, RNA polymerase is depleted in domain II, which is folded into a higher-order structure and is associated with H1 histone, whereas domain I conformation is preserved. Similar results were obtained for cells treated with inhibitors of associated regulatory factors. These results suggest that depletion of RNA polymerase II is the result of a physical barrier due to the folding of chromatin in domain II. The novel chromatin structure in the first domain during mitosis also suggests a mechanism for marking active genes in successive cell cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号