首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we present the design of a new structural extension for the e-puck mobile robot. The extension may be used to transform what is traditionally a swarm robotics platform into a self-reconfigurable modular robotic system. We introduce a modified version of a previously developed collective locomotion algorithm and present new experimental results across three different themes. We begin by investigating how the performance of the collective locomotion algorithm is affected by the size and shape of the robotic structures involved, examining structures containing up to nine modules. Without alteration to the underlying algorithm, we then analyse the implicit self-assembling and self-reconfiguring capabilities of the system and show that the novel use of ‘virtual sensors’ can significantly improve performance. Finally, by examining a form of environment driven self-reconfiguration, we observe the behaviour of the system in a more complex environment. We conclude that the modular e-puck extension represents a viable platform for investigating collective locomotion, self-assembly and self-reconfiguration.  相似文献   

2.
Central Pattern Generators (CPGs) are a suitable paradigm to solve the problem of locomotion control in walking robots. CPGs are able to generate feed-forward signals to achieve a proper coordination among the robot legs. In literature they are often modelled as networks of coupled nonlinear systems. However the topic of feedback in these systems is rarely addressed. On the other hand feedback is essential for locomotion. In this paper the CPG for a hexapod robot is implemented through Cellular Neural Networks (CNNs). Feedback is included in the CPG controller by exploiting the dynamic properties of the CPG motor-neurons, such as synchronization issue and local bifurcations. These universal paradigms provide the essential issues to include sensory feedback in CPG architectures based on coupled nonlinear systems. Experiments on a dynamic model of a hexapod robot are presented to validate the approach introduced.  相似文献   

3.
The locomotion of many soft-bodied animals is driven by the propagation of rhythmic waves of contraction and extension along the body. These waves are classically attributed to globally synchronized periodic patterns in the nervous system embodied in a central pattern generator (CPG). However, in many primitive organisms such as earthworms and insect larvae, the evidence for a CPG is weak, or even non-existent. We propose a neuromechanical model for rhythmically coordinated crawling that obviates the need for a CPG, by locally coupling the local neuro-muscular dynamics in the body to the mechanics of the body as it interacts frictionally with the substrate. We analyse our model using a combination of analytical and numerical methods to determine the parameter regimes where coordinated crawling is possible and compare our results with experimental data. Our theory naturally suggests mechanisms for how these movements might arise in developing organisms and how they are maintained in adults, and also suggests a robust design principle for engineered motility in soft systems.  相似文献   

4.
In this paper, we present an extended mathematical model of the central pattern generator (CPG) in the spinal cord. The proposed CPG model is used as the underlying low-level controller of a humanoid robot to generate various walking patterns. Such biological mechanisms have been demonstrated to be robust in locomotion of animal. Our model is supported by two neurophysiological studies. The first study identified a neural circuitry consisting of a two-layered CPG, in which pattern formation and rhythm generation are produced at different levels. The second study focused on a specific neural model that can generate different patterns, including oscillation. This neural model was employed in the pattern generation layer of our CPG, which enables it to produce different motion patterns—rhythmic as well as non-rhythmic motions. Due to the pattern-formation layer, the CPG is able to produce behaviors related to the dominating rhythm (extension/flexion) and rhythm deletion without rhythm resetting. The proposed multi-layered multi-pattern CPG model (MLMP-CPG) has been deployed in a 3D humanoid robot (NAO) while it performs locomotion tasks. The effectiveness of our model is demonstrated in simulations and through experimental results.  相似文献   

5.
There is an increasing interest in conceiving robotic systems that are able to move and act in an unstructured and not predefined environment, for which autonomy and adaptability are crucial features. In nature, animals are autonomous biological systems, which often serve as bio-inspiration models, not only for their physical and mechanical properties, but also their control structures that enable adaptability and autonomy—for which learning is (at least) partially responsible. This work proposes a system which seeks to enable a quadruped robot to online learn to detect and to avoid stumbling on an obstacle in its path. The detection relies in a forward internal model that estimates the robot’s perceptive information by exploring the locomotion repetitive nature. The system adapts the locomotion in order to place the robot optimally before attempting to step over the obstacle, avoiding any stumbling. Locomotion adaptation is achieved by changing control parameters of a central pattern generator (CPG)-based locomotion controller. The mechanism learns the necessary alterations to the stride length in order to adapt the locomotion by changing the required CPG parameter. Both learning tasks occur online and together define a sensorimotor map, which enables the robot to learn to step over the obstacle in its path. Simulation results show the feasibility of the proposed approach.  相似文献   

6.
The central pattern generators (CPG) in the spinal cord are thought to be responsible for producing the rhythmic motor patterns during rhythmic activities. For locomotor tasks, this involves much complexity, due to a redundant system of muscle actuators with a large number of highly nonlinear muscles. This study proposes a reduced neural control strategy for the CPG, based on modular organization of the co-active muscles, i.e., muscle synergies. Four synergies were extracted from the EMG data of the major leg muscles of two subjects, during two gait trials each, using non-negative matrix factorization algorithm. A Matsuoka׳s four-neuron CPG model with mutual inhibition, was utilized to generate the rhythmic activation patterns of the muscle synergies, using the hip flexion angle and foot contact force information from the sensory afferents as inputs. The model parameters were tuned using the experimental data of one gait trial, which resulted in a good fitting accuracy (RMSEs between 0.0491 and 0.1399) between the simulation and experimental synergy activations. The model׳s performance was then assessed by comparing its predictions for the activation patterns of the individual leg muscles during locomotion with the relevant EMG data. Results indicated that the characteristic features of the complex activation patterns of the muscles were well reproduced by the model for different gait trials and subjects. In general, the CPG- and muscle synergy-based model was promising in view of its simple architecture, yet extensive potentials for neuromuscular control, e.g., resolving redundancies, distributed and fast control, and modulation of locomotion by simple control signals.  相似文献   

7.
A Bio-Inspired Hopping Kangaroo Robot with an Active Tail   总被引:1,自引:0,他引:1  
Inspired by kangaroo's locomotion, we report on developing a kangaroo-style hopping robot. Unlike bipeds, quadrupeds, or hexapods which altemate the legs for forward locomotion, the kangaroo uses both legs synchronously and generates the forward locomotion by continuous hopping behavior, and the tail actively balances the unwanted angular momentum generated by the leg motion. In this work, we generate the Center of Mass (CoM) locomotion of the robot based on the reduced-order Rolling Spring Loaded Inverted Pendulum (R-SLIP) model, for matching the dynamic behavior of the empirical robot legs. In order to compensate the possible body pitch variation, the robot is equipped with an active tail for pitch variation compensation, emulating the balance mechanism of a kangaroo. The robot is empirically built, and various design issues and strategies are addressed. Finally, the experimental evaluation is executed to validate the performance of the kangaroo-style robot with hopping locomotion.  相似文献   

8.
A systematic method for an autonomous decentralized control system is still lacking, despite its appealing concept. In order to alleviate this, we focused on the amoeboid locomotion of the true slime mold, and extracted a design scheme for the decentralized control mechanism that leads to adaptive behavior for the entire system, based on the so-called discrepancy function. In this paper, we intensively investigate the universality of this design scheme by applying it to a different type of locomotion based on a 'synthetic approach'. As a first step, we implement this design scheme to the control of a real physical two-dimensional serpentine robot that exhibits slithering locomotion. The experimental results show that the robot exhibits adaptive behavior and responds to the environmental changes; it is also robust against malfunctions of the body segments due to the local sensory feedback control that is based on the discrepancy function. We expect the results to shed new light on the methodology of autonomous decentralized control systems.  相似文献   

9.
10.
The neural control of locomotion involves a constant interplaybetween the actions of a central pattern generator (CPG) andsensory input elicited by bodily movement. With respect to theCPG, recent analysis of fictive locomotion has shown that durationsof flexion and extension tend to covary along specific linesin plots of phase duration versus cycle duration. The slopesof these lines evidently depend on internal states that varyamong preparations, but, within a preparation, remain rathersteady from one sequence to the next. These relationships canbe reproduced in a simple oscillator model having two pairsof preset parameters, suggesting that steady internal drivesto flexor and extensor half-centers determine how phase durationscovary. Regarding the role of sensory inputs, previous experimentshave revealed state-dependent rules that govern phase-switchingindependently of the CPG rhythm. In addition, sensory inputis known to modulate motoneuronal activation through stretchreflexes. To explore how sensory input combines with the locomotorCPG, we used a neuromechanical model with muscle actuators,proprioceptive feedback, sensory phase-switching rules, anda CPG. Interestingly, sequences of stable locomotion were alwaysassociated with phase durations that conformed to an extensor-dominatedphase-duration characteristic (where extension durations varymore than flexion durations). This is the characteristic seenin normal animals, but not necessarily in fictive locomotion,where movement and associated sensory input are absent. Thissuggests that to produce the biomechanical events required forstability, an extensor-dominated phase-duration characteristicis required. In the model, when the preset CPG phase durationswere well matched to coincide the biomechanical requirements,CPG-mediated phase switching produced stable cycles. When CPGphase durations were too short, phases switched prematurelyand the model soon fell. When CPG phase durations were too long,sensory rules fired and overrode the CPG, maintaining stability.We posit that under normal circumstances, descending input fromhigher centers continually adjusts the operating point of theCPG on the preset phase-duration characteristic according toanticipated biomechanical requirements. When the predictionsare good, CPG-generated phase durations closely match thoserequired by the kinetics and kinematics, and little or no sensoryadjustment occurs. We propose the term "neuromechanical tuning"to describe this process of matching the CPG to the biomechanicalrequirements.  相似文献   

11.
Animals' free movement in natural environments has attracted many researchers to explore control methods for bio-inspired robots. This paper presents a novel reflex mechanism based on a Central Pattern Generator (CPG) for adaptive locomotion of limbless robots. First, inspired by the concept of reflex arc, the reflex mechanism is designed on a connectionist CPG model. Since the CPG model inspired by the spinal cord of lampreys is developed at the neuron level, it provides a possible natural solution for sensory reflex integration. Therefore, sensory neurons that bridge the external stimuli and the CPG model, together with the concept of reflex arc, are utilized for designing the sensory reflex mechanism. Then, a border reflex and a body reflex are further developed and applied on the ends and the middle part of a limbless robot, respectively. Finally, a ball hitting scenario and a corridor passing scenario are designed to verify the proposed method. Results of simulations and on-site experiments show the feasibility and effectiveness of the reflex mechanism in realizing fast response and adaptive limbless locomotion.  相似文献   

12.
Locomotion involves repetitive movements and is often executed unconsciously and automatically. In order to achieve smooth locomotion, the coordination of the rhythms of all physical parts is important. Neurophysiological studies have revealed that basic rhythms are produced in the spinal network called, the central pattern generator (CPG), where some neural oscillators interact to self-organize coordinated rhythms. We present a model of the adaptation of locomotion patterns to a variable environment, and attempt to elucidate how the dynamics of locomotion pattern generation are adjusted by the environmental changes. Recent experimental results indicate that decerebrate cats have the ability to learn new gait patterns in a changed environment. In those experiments, a decerebrate cat was set on a treadmill consisting of three moving belts. This treadmill provides a periodic perturbation to each limb through variation of the speed of each belt. When the belt for the left forelimb is quickened, the decerebrate cat initially loses interlimb coordination and stability, but gradually recovers them and finally walks with a new gait. Based on the above biological facts, we propose a CPG model whose rhythmic pattern adapts to periodic perturbation from the variable environment. First, we design the oscillator interactions to generate a desired rhythmic pattern. In our model, oscillator interactions are regarded as the forces that generate the desired motion pattern. If the desired pattern has already been realized, then the interactions are equal to zero. However, this rhythmic pattern is not reproducible when there is an environmental change. Also, if we do not adjust the rhythmic dynamics, the oscillator interactions will not be zero. Therefore, in our adaptation rule, we adjust the memorized rhythmic pattern so as to minimize the oscillator interactions. This rule can describe the adaptive behavior of decerebrate cats well. Finally, we propose a mathematical framework of an adaptation in rhythmic motion. Our framework consists of three types of dynamics: environmental, rhythmic motion, and adaptation dynamics. We conclude that the time scale of adaptation dynamics should be much larger than that of rhythmic motion dynamics, and the repetition of rhythmic motions in a stable environment is important for the convergence of adaptation. Received: 10 July 1997 / Accepted in revised form: 13 March 1998  相似文献   

13.
Developing efficient walking gaits for quadruped robots has intrigued investigators for years. Trot gait, as a fast locomotion gait, has been widely used in robot control. This paper follows the idea of the six determinants of gait and designs a trot gait for a parallel-leg quadruped robot, Baby Elephant. The walking period and step length are set as constants to maintain a relatively fast speed while changing different foot trajectories to test walking quality. Experiments show that kicking leg back improves body stability. Then, a steady and smooth trot gait is designed. Furthermore, inspired by Central Pattern Generators (CPG), a series CPG model is proposed to achieve robust and dynamic trot gait. It is generally believed that CPG is capable of producing rhythmic movements, such as swimming, walking, and flying, even when isolated from brain and sensory inputs. The proposed CPG model, inspired by the series concept, can automatically learn the previous well-designed trot gait and reproduce it, and has the ability to change its walking frequency online as well. Experiments are done in real world to verify this method.  相似文献   

14.
We review the mechanical components of an approach to motion science that enlists recent progress in neurophysiology, biomechanics, control systems engineering, and non-linear dynamical systems to explore the integration of muscular, skeletal, and neural mechanics that creates effective locomotor behavior. We use rapid arthropod terrestrial locomotion as the model system because of the wealth of experimental data available. With this foundation, we list a set of hypotheses for the control of movement, outline their mathematical underpinning and show how they have inspired the design of the hexapedal robot, RHex.  相似文献   

15.
Animals exhibit astoundingly adaptive and supple locomotion under real world constraints. In order to endow robots with similar capabilities, we must implement many degrees of freedom, equivalent to animals, into the robots’ bodies. For taming many degrees of freedom, the concept of autonomous decentralized control plays a pivotal role. However a systematic way of designing such autonomous decentralized control system is still missing. Aiming at understanding the principles that underlie animals’ locomotion, we have focused on a true slime mold, a primitive living organism, and extracted a design scheme for autonomous decentralized control system. In order to validate this design scheme, this article presents a soft-bodied amoeboid robot inspired by the true slime mold. Significant features of this robot are twofold: (1) the robot has a truly soft and deformable body stemming from real-time tunable springs and protoplasm, the former is used for an outer skin of the body and the latter is to satisfy the law of conservation of mass; and (2) fully decentralized control using coupled oscillators with completely local sensory feedback mechanism is realized by exploiting the long-distance physical interaction between the body parts stemming from the law of conservation of protoplasmic mass. Simulation results show that this robot exhibits highly supple and adaptive locomotion without relying on any hierarchical structure. The results obtained are expected to shed new light on design methodology for autonomous decentralized control system.  相似文献   

16.
We show that an ongoing locomotor pattern can be dynamically controlled by applying discrete pulses of electrical stimulation to the central pattern generator (CPG) for locomotion. Data are presented from a pair of experiments on biological (wetware) and electrical (hardware) models of the CPG demonstrating that stimulation causes brief deviations from the CPG’s limit cycle activity. The exact characteristics of the deviation depend strongly on the phase of stimulation. Applications of this work are illustrated by examples showing how locomotion can be controlled by using a feedback loop to monitor CPG activity and applying stimuli at the appropriate times to modulate motor output. Eventually, this approach could lead to development of a neuroprosthetic device for restoring locomotion after paralysis. R. J. Vogelstein and F. Tenore contributed equally to this work.  相似文献   

17.
 Chains of coupled oscillators of simple “rotator” type have been used to model the central pattern generator (CPG) for locomotion in lamprey, among numerous applications in biology and elsewhere. In this paper, motivated by experiments on lamprey CPG with brainstem attached, we investigate a simple oscillator model with internal structure which captures both excitable and bursting dynamics. This model, and that for the coupling functions, is inspired by the Hodgkin–Huxley equations and two-variable simplifications thereof. We analyse pairs of coupled oscillators with both excitatory and inhibitory coupling. We also study traveling wave patterns arising from chains of oscillators, including simulations of “body shapes” generated by a double chain of oscillators providing input to a kinematic musculature model of lamprey.. Received: 25 November 1996 / Revised version: 9 December 1997  相似文献   

18.
Central pattern generators (CPGs) consisting of interacting groups of neurons drive a variety of repetitive, rhythmic behaviors in invertebrates and vertebrates, such as arise in locomotion, respiration, mastication, scratching, and so on. These CPGs are able to generate rhythmic activity in the absence of afferent feedback or rhythmic inputs. However, functionally relevant CPGs must adaptively respond to changing demands, manifested as changes in oscillation period or in relative phase durations in response to variations in non-patterned inputs or drives. Although many half-center CPG models, composed of symmetric units linked by reciprocal inhibition yet varying in their intrinsic cellular properties, have been proposed, the precise oscillatory mechanisms operating in most biological CPGs remain unknown. Using numerical simulations and phase-plane analysis, we comparatively investigated how the intrinsic cellular features incorporated in different CPG models, such as subthreshold activation based on a slowly inactivating persistent sodium current, adaptation based on slowly activating calcium-dependent potassium current, or post-inhibitory rebound excitation, can contribute to the control of oscillation period and phase durations in response to changes in excitatory external drive to one or both half-centers. Our analysis shows that both the sensitivity of oscillation period to alterations of excitatory drive and the degree to which the duration of each phase can be separately controlled depend strongly on the intrinsic cellular mechanisms involved in rhythm generation and phase transitions. In particular, the CPG formed from units incorporating a slowly inactivating persistent sodium current shows the greatest range of oscillation periods and the greatest degree of independence in phase duration control by asymmetric inputs. These results are explained based on geometric analysis of the phase plane structures corresponding to the dynamics for each CPG type, which in particular helps pinpoint the roles of escape and release from synaptic inhibition in the effects we find.  相似文献   

19.
Autonomous decentralized control has attracted considerable attention because it enables us to understand the adaptive and versatile locomotion of animals and facilitates the construction of truly intelligent artificial agents. Thus far, we have developed a snake-like robot (HAUBOT I) that is driven by a decentralized control scheme based on a discrepancy function, which incorporates phasic control. In this paper, we investigate a decentralized control scheme in which phasic and tonic control are well coordinated, as an extension of our previous study. To verify the validity of the proposed control scheme, we apply it to a snake-like robot (HAUBOT II) that can adjust both the phase relationship between its body segments and the stiffness at each joint. The results indicate that the proposed control scheme enables the robot to exhibit remarkable real-time adaptability over various frictional and inclined terrains. These findings can potentially enable us to gain a deeper insight into the autonomous decentralized control mechanism underlying the adaptive and resilient locomotion of animals.  相似文献   

20.
We continue the analysis of the network of symmetrically coupled cells modeling central pattern generators (CPG) for quadruped locomotion proposed by Golubitsky, Stewart, Buono and Collins by studying secondary gaits. Secondary gaits are modeled by output signals from the CPG where each cell emits one of two different output signals along with exact phase shifts. Examples of secondary gaits are transverse gallop, rotary gallop, and canter. We classify secondary gaits that bifurcate when the Poincaré map of a primary gait has a real eigenvalue crossing the unit circle. In particular, we show that periodic solutions modeling transverse gallop and rotary gallop bifurcate from primary gaits. Moreover, we find gaits from period-doubling bifurcations and analyze plausible footfall patterns. Numerical simulations are performed using the Morris-Lecar equations as cell dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号