首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Cell growth is influenced by environmental stress. Mammalian target of rapamycin (mTOR), the central regulator of cell growth, can be positively or negatively regulated by various stresses through different mechanisms. The p38 MAP kinase pathway is essential in cellular stress responses. Activation of MK2, a downstream kinase of p38α, enhances mTOR complex 1 (mTORC1) activity by preventing TSC2 from inhibiting mTOR activation. The p38β-PRAK cascade targets Rheb to inhibit mTORC1 activity upon glucose depletion. Here we show the activation of p38β participates in activation of mTOR complex 1 (mTORC1) induced by arsenite but not insulin, nutrients, anisomycin, or H(2)O(2). Arsenite treatment of cells activates p38β and induces interaction between p38β and Raptor, a regulatory component of mTORC1, resulting in phosphorylation of Raptor on Ser(863) and Ser(771). The phosphorylation of Raptor on these sites enhances mTORC1 activity, and contributes largely to arsenite-induced mTORC1 activation. Our results shown here and in previous work demonstrate that the p38 pathway can regulate different components of the mTORC1 pathway, and that p38β can target different substrates to either positively or negatively regulate mTORC1 activation when a cell encounters different environmental stresses.  相似文献   

2.
TOR complex 1 (TORC1), an oligomer of the mTOR (mammalian target of rapamycin) protein kinase, its substrate binding subunit raptor, and the polypeptide Lst8/GbetaL, controls cell growth in all eukaryotes in response to nutrient availability and in metazoans to insulin and growth factors, energy status, and stress conditions. This review focuses on the biochemical mechanisms that regulate mTORC1 kinase activity, with special emphasis on mTORC1 regulation by amino acids. The dominant positive regulator of mTORC1 is the GTP-charged form of the ras-like GTPase Rheb. Insulin, growth factors, and a variety of cellular stressors regulate mTORC1 by controlling Rheb GTP charging through modulating the activity of the tuberous sclerosis complex, the Rheb GTPase activating protein. In contrast, amino acids, especially leucine, regulate mTORC1 by controlling the ability of Rheb-GTP to activate mTORC1. Rheb binds directly to mTOR, an interaction that appears to be essential for mTORC1 activation. In addition, Rheb-GTP stimulates phospholipase D1 to generate phosphatidic acid, a positive effector of mTORC1 activation, and binds to the mTOR inhibitor FKBP38, to displace it from mTOR. The contribution of Rheb's regulation of PL-D1 and FKBP38 to mTORC1 activation, relative to Rheb's direct binding to mTOR, remains to be fully defined. The rag GTPases, functioning as obligatory heterodimers, are also required for amino acid regulation of mTORC1. As with amino acid deficiency, however, the inhibitory effect of rag depletion on mTORC1 can be overcome by Rheb overexpression, whereas Rheb depletion obviates rag's ability to activate mTORC1. The rag heterodimer interacts directly with mTORC1 and may direct mTORC1 to the Rheb-containing vesicular compartment in response to amino acid sufficiency, enabling Rheb-GTP activation of mTORC1. The type III phosphatidylinositol kinase also participates in amino acid-dependent mTORC1 activation, although the site of action of its product, 3'OH-phosphatidylinositol, in this process is unclear.  相似文献   

3.
The p38 mitogen-activated protein kinase (MAPK) pathway has been implicated in both suppression and promotion of tumorigenesis. It remains unclear how these 2 opposite functions of p38 operate in vivo to impact cancer development. We previously reported that a p38 downstream kinase, p38-regulated/activated kinase (PRAK), suppresses tumor initiation and promotion by mediating oncogene-induced senescence in a murine skin carcinogenesis model. Here, using the same model, we show that once the tumors are formed, PRAK promotes the growth and progression of skin tumors. Further studies identify PRAK as a novel host factor essential for tumor angiogenesis. In response to tumor-secreted proangiogenic factors, PRAK is activated by p38 via a vascular endothelial growth factor receptor 2 (VEGFR2)-dependent mechanism in host endothelial cells, where it mediates cell migration toward tumors and incorporation of these cells into tumor vasculature, at least partly by regulating the phosphorylation and activation of focal adhesion kinase (FAK) and cytoskeletal reorganization. These findings have uncovered a novel signaling circuit essential for endothelial cell motility and tumor angiogenesis. Moreover, we demonstrate that the tumor-suppressing and tumor-promoting functions of the p38-PRAK pathway are temporally and spatially separated during cancer development in vivo, relying on the stimulus, and the tissue type and the stage of cancer development in which it is activated.  相似文献   

4.
Signaling through mammalian target of rapamycin complex 1 (mTORC1) is stimulated by amino acids and insulin. Insulin inactivates TSC1/2, the GTPase-activator complex for Rheb, and Rheb.GTP activates mTORC1. It is not clear how amino acids regulate mTORC1. FKBP38 (immunophilin FK506-binding protein, 38 kDa), was recently reported to exert a negative effect on mTORC1 function that is relieved by its binding to Rheb.GTP. We confirm that Rheb binds wild type FKBP38, but inactive Rheb mutants showed contrasting abilities to bind FKBP38. We were unable to observe any regulation of FKBP38/mTOR binding by amino acids or insulin. Furthermore, FKBP38 did not inhibit mTORC1 signaling. The translationally controlled tumor protein (TCTP) in Drosophila was recently reported to act as the guanine nucleotide-exchange factor for Rheb. We have studied the role of TCTP in mammalian TORC1 signaling and its control by amino acids. Reducing TCTP levels did not reproducibly affect mTORC1 signaling in amino acid-replete/insulin-stimulated cells. Moreover, overexpressing TCTP did not rescue mTORC1 signaling in amino acid-starved cells. In addition, we were unable to see any stable interaction between TCTP and Rheb or mTORC1. Accumulation of uncharged tRNA has been previously proposed to be involved in the inhibition of mTORC1 signaling during amino acid starvation. To test this hypothesis, we used a Chinese hamster ovary cell line containing a temperature-sensitive mutation in leucyl-tRNA synthetase. Leucine deprivation markedly inhibited mTORC1 signaling in these cells, but shifting the cells to the nonpermissive temperature for the synthetase did not. These data indicate that uncharged tRNA(Leu) does not switch off mTORC1 signaling and suggest that mTORC1 is controlled by a distinct pathway that senses the availability of amino acids. Our data also indicate that, in the mammalian cell lines tested here, neither TCTP nor FKBP38 regulates mTORC1 signaling.  相似文献   

5.
《Autophagy》2013,9(4):553-554
mTOR is a major biological switch, coordinating an adequate response to changes in energy uptake (amino acids, glucose), growth signals (hormones, growth factors) and environmental stress. mTOR kinase is highly conserved through evolution from yeast to man and in both cases, controls autophagy and cellular translation in response to nutrient stress. mTOR kinase is the catalytic component of two distinct multiprotein complexes called mTORC1 and mTORC2. In addition to mTOR, mTORC1 contains Raptor, mLST8 and PRAS40. mTORC2 contains mTOR, Rictor, mSIN1 and Protor-1. mTORC1 activates p70S6K, which in turn phosphorylates the ribosomal protein S6 and 4E-BP1, both involved in protein translation. mTORC2 activates AKT directly by phosphorylating Serine 473. pAKT(S473) phosphorylates TSC2 (tuberin) and inactivates it, preventing its association with TSC1 (hamartin) and the inhibition of Rheb, an activator of mTOR. pAKT also phosphorylates PRAS40, releasing it from the mTORC1 complex, increasing its kinase activity. Finally, AKT regulates FOXO3 phosphorylation, sequestering it in the cytosol in an inactive state.  相似文献   

6.
Rheb G-protein plays critical roles in the TSC/Rheb/mTOR signaling pathway by activating mTORC1. The activation of mTORC1 by Rheb can be faithfully reproduced in vitro by using mTORC1 immunoprecipitated by the use of anti-raptor antibody from mammalian cells starved for nutrients. The low in vitro kinase activity against 4E-BP1 of this mTORC1 preparation is dramatically increased by the addition of recombinant Rheb. On the other hand, the addition of Rheb does not activate mTORC2 immunoprecipitated from mammalian cells by the use of anti-rictor antibody. The activation of mTORC1 is specific to Rheb, because other G-proteins such as KRas, RalA/B, and Cdc42 did not activate mTORC1. Both Rheb1 and Rheb2 activate mTORC1. In addition, the activation is dependent on the presence of bound GTP. We also find that the effector domain of Rheb is required for the mTORC1 activation. FKBP38, a recently proposed mediator of Rheb action, appears not to be involved in the Rheb-dependent activation of mTORC1 in vitro, because the preparation of mTORC1 that is devoid of FKBP38 is still activated by Rheb. The addition of Rheb results in a significant increase of binding of the substrate protein 4E-BP1 to mTORC1. PRAS40, a TOR signaling (TOS) motif-containing protein that competes with the binding of 4EBP1 to mTORC1, inhibits Rheb-induced activation of mTORC1. A preparation of mTORC1 that is devoid of raptor is not activated by Rheb. Rheb does not induce autophosphorylation of mTOR. These results suggest that Rheb induces alteration in the binding of 4E-BP1 with mTORC1 to regulate mTORC1 activation.Rheb defines a unique member of the Ras superfamily G-proteins (1). We have shown that Rheb proteins are conserved and are found from yeast to human (2). Although yeast and fruit fly have one Rheb, mouse and human have two Rheb proteins termed Rheb1 (or simply Rheb) and Rheb2 (RhebL1) (2). Structurally, these proteins contain G1-G5 boxes, short stretches of amino acids that define the function of the Ras superfamily G-proteins including guanine nucleotide binding (1, 3, 4). Rheb proteins have a conserved arginine at residue 15 that corresponds to residue 12 of Ras (1). The effector domain required for the binding with downstream effectors encompasses the G2 box and its adjacent sequences (1, 5). Structural analysis by x-ray crystallography further shows that the effector domain is exposed to solvent, is located close to the phosphates of GTP especially at residues 35–38, and undergoes conformational change during GTP/GDP exchange (6). In addition, all Rheb proteins end with the CAAX (C is cysteine, A is an aliphatic amino acid, and X is the C-terminal amino acid) motif that signals farnesylation. In fact, we as well as others have shown that these proteins are farnesylated (79).Rheb plays critical roles in the TSC/Rheb/mTOR signaling, a signaling pathway that plays central roles in regulating protein synthesis and growth in response to nutrient, energy, and growth conditions (1014). Rheb is down-regulated by a TSC1·TSC2 complex that acts as a GTPase-activating protein for Rheb (1519). Recent studies established that the GAP domain of TSC2 defines the functional domain for the down-regulation of Rheb (20). Mutations in the Tsc1 or Tsc2 gene lead to tuberous sclerosis whose symptoms include the appearance of benign tumors called hamartomas at different parts of the body as well as neurological symptoms (21, 22). Overexpression of Rheb results in constitutive activation of mTOR even in the absence of nutrients (15, 16). Two mTOR complexes, mTORC1 and mTORC2, have been identified (23, 24). Whereas mTORC1 is involved in protein synthesis activation mediated by S6K and 4EBP1, mTORC2 is involved in the phosphorylation of Akt in response to insulin. It has been suggested that Rheb is involved in the activation of mTORC1 but not mTORC2 (25).Although Rheb is clearly involved in the activation of mTOR, the mechanism of activation has not been established. We as well as others have suggested a model that involves the interaction of Rheb with the TOR complex (2628). Rheb activation of mTOR kinase activity using immunoprecipitated mTORC1 was reported (29). Rheb has been shown to interact with mTOR (27, 30), and this may involve direct interaction of Rheb with the kinase domain of mTOR (27). However, this Rheb/mTOR interaction is a weak interaction and is not dependent on the presence of GTP bound to Rheb (27, 28). Recently, a different model proposing that FKBP38 (FK506-binding protein 38) mediates the activation of mTORC1 by Rheb was proposed (31, 32). In this model, FKBP38 binds mTOR and negatively regulates mTOR activity, and this negative regulation is blocked by the binding of Rheb to FKBP38. However, recent reports dispute this idea (33).To further characterize Rheb activation of mTOR, we have utilized an in vitro system that reproduces activation of mTORC1 by the addition of recombinant Rheb. We used mTORC1 immunoprecipitated from nutrient-starved cells using anti-raptor antibody and have shown that its kinase activity against 4E-BP1 is dramatically increased by the addition of recombinant Rheb. Importantly, the activation of mTORC1 is specific to Rheb and is dependent on the presence of bound GTP as well as an intact effector domain. FKBP38 is not detected in our preparation and further investigation suggests that FKBP38 is not an essential component for the activation of mTORC1 by Rheb. Our study revealed that Rheb enhances the binding of a substrate 4E-BP1 with mTORC1 rather than increasing the kinase activity of mTOR.  相似文献   

7.
Regulation of PRAK subcellular location by p38 MAP kinases   总被引:13,自引:0,他引:13       下载免费PDF全文
The p38 mitogen-activated protein kinase (MAPK) pathway plays an important role in cellular responses to inflammatory stimuli and environmental stress. p38 regulated/activated protein kinase (PRAK, also known as mitogen-activated protein kinase activated protein kinase 5 [MAPKAPK5]) functions downstream of p38alpha and p38beta in mediating the signaling of the p38 pathway. Immunostaining revealed that endogenous PRAK was predominantly localized in the cytoplasm. Interestingly, ectopically expressed PRAK was localized in the nucleus and can be redistributed by coexpression of p38alpha or p38beta to the locations of p38alpha and p38beta. Mutations in the docking groove on p38alpha/p38beta, or the p38-docking site in PRAK, disrupted the PRAK-p38 interaction and impaired the ability of p38alpha and p38beta to redistribute ectopically expressed PRAK, indicating that the location of PRAK could be controlled by its docking interaction with p38alpha and p38beta. Although the majority of PRAK molecules were detected in the cytoplasm, PRAK is consistently shuttling between the cytoplasm and the nucleus. A sequence analysis of PRAK shows that PRAK contains both a putative nuclear export sequence (NES) and a nuclear localization sequence (NLS). The shuttling of PRAK requires NES and NLS motifs in PRAK and can be regulated through cellular activation induced by stress stimuli. The nuclear content of PRAK was reduced after stimulation, which resulted from a decrease in the nuclear import of PRAK and an increase in the nuclear export of PRAK. The nuclear import of PRAK is independent from p38 activation, but the nuclear export requires p38-mediated phosphorylation of PRAK. Thus, the subcellular distribution of PRAK is determined by multiple factors including its own NES and NLS, docking interactions between PRAK and docking proteins, phosphorylation of PRAK, and cellular activation status. The p38 MAPKs not only regulate PRAK activity and PRAK activation-related translocation, but also dock PRAK to selected subcellular locations in resting cells.  相似文献   

8.
《Cytokine》2015,74(2):219-224
TGF-β1 (transforming growth factor beta 1) is a negative regulator of lymphocytes, inhibiting proliferation and switching on the apoptotic program in normal lymphoid cells. Lymphoma cells often lose their sensitivity to proapoptotic/anti-proliferative regulators such as TGF-β1. Rapamycin can influence both mTOR (mammalian target of rapamycin) and TGF-β signaling, and through these pathways it is able to enhance TGF-β induced anti-proliferative and apoptotic responses. In the present work we investigated the effect of rapamycin and TGF-β1 combination on cell growth and on TGF-β and mTOR signalling events in lymphoma cells.Rapamycin, an inhibitor of mTORC1 (mTOR complex 1) did not elicit apoptosis in lymphoma cells; however, the combination of rapamycin with exogenous TGF-β1 induced apoptosis and restored TGF-β1 dependent apoptotic machinery in several lymphoma cell lines with reduced TGF-β sensitivity in vitro. In parallel, the phosphorylation of p70 ribosomal S6 kinase (p70S6K) and ribosomal S6 protein, targets of mTORC1, was completely eliminated. Knockdown of Smad signalling by Smad4 siRNA had no influence on apoptosis induced by the rapamycin + TGF-β1, suggesting that this effect is independent of Smad signalling. However, apoptosis induction was dependent on early protein phosphatase 2A (PP2A) activity, and in part on caspases. Rapamycin + TGF-β1 induced apoptosis was not completely eliminated by a caspase inhibitor.These results suggest that high mTOR activity contributes to TGF-β resistance and lowering mTORC1 kinase activity may provide a tool in high grade B-cell lymphoma therapy by restoring the sensitivity to normally available regulators such as TGF-β1.  相似文献   

9.
mTORC1 and p53     
A balance must be struck between cell growth and stress responses to ensure that cells proliferate without accumulating damaged DNA. This balance means that optimal cell proliferation requires the integration of pro-growth and stress-response pathways. mTOR (mechanistic target of rapamycin) is a pleiotropic kinase found in complex 1 (mTORC1). The mTORC1 pathway governs a response to mitogenic signals with high energy levels to promote protein synthesis and cell growth. In contrast, the p53 DNA damage response pathway is the arbiter of cell proliferation, restraining mTORC1 under conditions of genotoxic stress. Recent studies suggest a complicated integration of these pathways to ensure successful cell growth and proliferation without compromising genome maintenance. Deciphering this integration could be key to understanding the potential clinical usefulness of mTORC1 inhibitors like rapamycin. Here we discuss how these p53-mTORC1 interactions might play a role in the suppression of cancer and perhaps the development of cellular senescence and organismal aging.  相似文献   

10.
Conjugated linoleic acid (CLA) inhibits tumorigenesis and tumor growth in most model systems, an effect mediated in part by its pro-apoptotic activity. We previously showed that trans-10,cis-12 CLA induced apoptosis of p53-mutant TM4t mouse mammary tumor cells through both mitochondrial and endoplasmic reticulum stress pathways. In the current study, we investigated the role of AMP-activated protein kinase (AMPK), a key player in fatty acid metabolism, in CLA-induced apoptosis in TM4t cells. We found that t10,c12-CLA increased phosphorylation of AMPK, and that CLA-induced apoptosis was enhanced by the AMPK agonist 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR) and inhibited by the AMPK inhibitor compound C. The increased AMPK activity was not due to nutrient/energy depletion since ATP levels did not change in CLA-treated cells, and knockdown of the upstream kinase LKB1 did not affect its activity. Furthermore, our data do not demonstrate a role for the AMPK-modulated mTOR pathway in CLA-induced apoptosis. Although CLA decreased mTOR levels, activity was only modestly decreased. Moreover, rapamycin, which completely blocked the activity of mTORC1 and mTORC2, did not induce apoptosis, and attenuated rather than enhanced CLA-induced apoptosis. Instead, the data suggest that CLA-induced apoptosis is mediated by the AMPK–p38 MAPK–Bim pathway: CLA-induced phosphorylation of AMPK and p38 MAPK, and increased expression of Bim, occurred with a similar time course as apoptosis; phosphorylation of p38 MAPK was blocked by compound C; the increased Bim expression was blocked by p38 MAPK siRNA; CLA-induced apoptosis was attenuated by the p38 inhibitor SB-203580 and by siRNAs directed against p38 MAPK or Bim.  相似文献   

11.
The p38 mitogen-activated protein kinase (MAPK) pathway regulates multiple physiologic and pathologic processes, including cancer development. PRAK, a p38 substrate protein kinase, has previously been implicated in the suppression of skin carcinogenesis. In the current study, we show that PRAK deletion accelerates hematopoietic cancer development in a mouse model harboring an oncogenic ras allele, Eμ-N-Ras(G12D), specifically expressed in hematopoietic cells. Further investigation reveals that enhanced hematopoietic tumorigenesis by PRAK deficiency is associated with hyperactivation of the c-jun-NH(2)-kinase (JNK) pathway both in vivo and in primary hematopoietic cells isolated from spleens. In primary splenocytes, PRAK deficiency further enhanced oncogenic ras-induced cell proliferation and promoted ras-mediated colony formation on semisolid medium in a JNK-dependent manner. In addition, deletion of PRAK leads to abrogation of ras-induced accumulation of senescence markers. These findings indicate that PRAK suppresses hematopoietic cancer formation in this mouse model by antagonizing oncogenic ras-induced activation of the JNK pathway. Our results suggest that PRAK may function as a tumor suppressor in multiple types of cancers.  相似文献   

12.
PRAK is essential for ras-induced senescence and tumor suppression   总被引:1,自引:0,他引:1  
Sun P  Yoshizuka N  New L  Moser BA  Li Y  Liao R  Xie C  Chen J  Deng Q  Yamout M  Dong MQ  Frangou CG  Yates JR  Wright PE  Han J 《Cell》2007,128(2):295-308
Like apoptosis, oncogene-induced senescence is a barrier to tumor development. However, relatively little is known about the signaling pathways mediating the senescence response. p38-regulated/activated protein kinase (PRAK) is a p38 MAPK substrate whose physiological functions are poorly understood. Here we describe a role for PRAK in tumor suppression by demonstrating that PRAK mediates senescence upon activation by p38 in response to oncogenic ras. PRAK deficiency in mice enhances DMBA-induced skin carcinogenesis, coinciding with compromised senescence induction. In primary cells, inactivation of PRAK prevents senescence and promotes oncogenic transformation. Furthermore, we show that PRAK activates p53 by direct phosphorylation. We propose that phosphorylation of p53 by PRAK following activation of p38 MAPK by ras plays an important role in ras-induced senescence and tumor suppression.  相似文献   

13.
PRAK, a novel protein kinase regulated by the p38 MAP kinase.   总被引:22,自引:2,他引:20       下载免费PDF全文
L New  Y Jiang  M Zhao  K Liu  W Zhu  L J Flood  Y Kato  G C Parry    J Han 《The EMBO journal》1998,17(12):3372-3384
We have identified and cloned a novel serine/ threonine kinase, p38-regulated/activated protein kinase (PRAK). PRAK is a 471 amino acid protein with 20-30% sequence identity to the known MAP kinase-regulated protein kinases RSK1/2/3, MNK1/2 and MAPKAP-K2/3. PRAK was found to be expressed in all human tissues and cell lines examined. In HeLa cells, PRAK was activated in response to cellular stress and proinflammatory cytokines. PRAK activity was regulated by p38alpha and p38beta both in vitro and in vivo and Thr182 was shown to be the regulatory phosphorylation site. Activated PRAK in turn phosphorylated small heat shock protein 27 (HSP27) at the physiologically relevant sites. An in-gel kinase assay demonstrated that PRAK is a major stress-activated kinase that can phosphorylate small heat shock protein, suggesting a potential role for PRAK in mediating stress-induced HSP27 phosphorylation in vivo.  相似文献   

14.
The p38 pathway provides negative feedback for Ras proliferative signaling   总被引:15,自引:0,他引:15  
Ras activates three mitogen-activated protein kinases (MAPKs) including ERK, JNK, and p38. Whereas the essential roles of ERK and JNK in Ras signaling has been established, the contribution of p38 remains unclear. Here we demonstrate that the p38 pathway functions as a negative regulator of Ras proliferative signaling via a feedback mechanism. Oncogenic Ras activated p38 and two p38-activated protein kinases, MAPK-activated protein kinase 2 (MK2) and p38-related/activated protein kinase (PRAK). MK2 and PRAK in turn suppressed Ras-induced gene expression and cell proliferation, whereas two mutant PRAKs, unresponsive to Ras, had little effect. Moreover, the constitutive p38 activator MKK6 also suppressed Ras activity in a p38-dependent manner whereas arsenite, a potent chemical inducer of p38, inhibited proliferation only in a tumor cell line that required Ras activity. MEK was required for Ras stimulation of the p38 pathway. The p38 pathway inhibited Ras activity by blocking activation of JNK, without effect upon ERK, as evidenced by the fact that PRAK-mediated suppression of Ras-induced cell proliferation was reversed by coexpression of JNKK2 or JNK1. These studies thus establish a negative feedback mechanism by which Ras proliferative activity is regulated via signaling integrations of MAPK pathways.  相似文献   

15.
Most neurodegenerative diseases show a disruption of autophagic function and display abnormal accumulation of toxic protein aggregates that promotes cellular stress and death. Therefore, induction of autophagy has been proposed as a reasonable strategy to help neurons clear abnormal protein aggregates and survive. The kinase mammalian target of rapamycin (mTOR) is a major regulator of the autophagic process and is regulated by starvation, growth factors, and cellular stressors. The phosphoinositide 3-kinase (PI3K)/ protein kinase B (Akt) pathway, which promotes cellular survival, is the main modulator upstream of mTOR, and alterations in this pathway are common in neurodegenerative diseases, e.g. Alzheimer’s disease (AD) and Parkinson’s disease (PD). In the present work we revised mammalian target of rapamycin complex 1 (mTORC1) pathway and mTORC2 as a complementary an important element in mTORC1 signaling. In addition, we revised the extracellular signal regulated kinase (ERK) pathway, which has become relevant in the regulation of the autophagic process and cellular survival through mTORC2 signaling. Finally, we summarize novel compounds that promote autophagy and neuronal protection in the last five years.  相似文献   

16.
哺乳动物雷帕霉素靶蛋白mTOR是一个进化上十分保守的蛋白激酶,属于PIKK超家族。在细胞内mTOR存在两种功能不同的复合体mTORC1和mTORC2。mTOR主要通过接受上游信号分子Rheb、TSC1/TSC2的调控来整合细胞内外信号,其下游效应器是4E-BP和p70S6K,通过影响特定mRNA的翻译调节细胞的生长和增殖。在神经系统方面,神经元的发育、突触可塑性的调节、学习和记忆的形成都依赖于适当的mTOR通路的活化。新近的研究显示,神经退行性疾病阿尔茨海默病患者表现mTOR通路的异常,在双转基因鼠中,APP和PS1表达与mTOR/P70S6K下调关联,并影响精神状态评分。mTOR信号通路生理功能和调节机制的研究对了解AD的发病机理和寻找药物靶点具有重要意义。  相似文献   

17.
Rheb is a homolog of Ras GTPase that regulates cell growth, proliferation, and regeneration via mammalian target of rapamycin (mTOR). Because of the well established potential of activated Ras to promote survival, we sought to investigate the ability of Rheb signaling to phenocopy Ras. We found that overexpression of lipid-anchored Rheb enhanced the apoptotic effects induced by UV light, TNFα, or tunicamycin in an mTOR complex 1 (mTORC1)-dependent manner. Knocking down endogenous Rheb or applying rapamycin led to partial protection, identifying Rheb as a mediator of cell death. Ras and c-Raf kinase opposed the apoptotic effects induced by UV light or TNFα but did not prevent Rheb-mediated apoptosis. To gain structural insight into the signaling mechanisms, we determined the structure of Rheb-GDP by NMR. The complex adopts the typical canonical fold of RasGTPases and displays the characteristic GDP-dependent picosecond to nanosecond backbone dynamics of the switch I and switch II regions. NMR revealed Ras effector-like binding of activated Rheb to the c-Raf-Ras-binding domain (RBD), but the affinity was 1000-fold lower than the Ras/RBD interaction, suggesting a lack of functional interaction. shRNA-mediated knockdown of apoptosis signal-regulating kinase 1 (ASK-1) strongly reduced UV or TNFα-induced apoptosis and suppressed enhancement by Rheb overexpression. In conclusion, Rheb-mTOR activation not only promotes normal cell growth but also enhances apoptosis in response to diverse toxic stimuli via an ASK-1-mediated mechanism. Pharmacological regulation of the Rheb/mTORC1 pathway using rapamycin should take the presence of cellular stress into consideration, as this may have clinical implications.  相似文献   

18.
mTORC1 contains multiple proteins and plays a central role in cell growth and metabolism. Raptor (regulatory-associated protein of mammalian target of rapamycin (mTOR)), a constitutively binding protein of mTORC1, is essential for mTORC1 activity and critical for the regulation of mTORC1 activity in response to insulin signaling and nutrient and energy sufficiency. Herein we demonstrate that mTOR phosphorylates raptor in vitro and in vivo. The phosphorylated residues were identified by using phosphopeptide mapping and mutagenesis. The phosphorylation of raptor is stimulated by insulin and inhibited by rapamycin. Importantly, the site-directed mutation of raptor at one phosphorylation site, Ser863, reduced mTORC1 activity both in vitro and in vivo. Moreover, the Ser863 mutant prevented small GTP-binding protein Rheb from enhancing the phosphorylation of S6 kinase (S6K) in cells. Therefore, our findings indicate that mTOR-mediated raptor phosphorylation plays an important role on activation of mTORC1.Mammalian target of rapamycin (mTOR)2 has been shown to function as a critical controller in cellular growth, survival, metabolism, and development (1). mTOR, a highly conserved Ser-Thr phosphatidylinositol 3-kinase-related protein kinase, structurally forms two distinct complexes, mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2), each of which catalyzes the phosphorylation of different substrates (1). The best characterized substrates for mTORC1 are eIF4E-binding protein (4E-BP, also known as PHAS) and p70 S6 kinase (S6K) (1), whereas mTORC2 phosphorylates the hydrophobic and turn motifs of protein kinase B (Akt/protein kinase B) (2) and protein kinase C (3, 4). mTORC1 constitutively consists of mTOR, raptor, and mLst8/GβL (1), whereas the proline-rich Akt substrate of 40 kDa (PRAS40) is a regulatory component of mTORC1 that disassociates after growth factor stimulation (5, 6). Raptor is essential for mTORC1 activity by providing a substrate binding function (7) but also plays a regulatory role on mTORC1 with stimuli of growth factors and nutrients (8). In response to insulin, raptor binding to substrates is elevated through the release of the competitive inhibitor PRAS40 from mTORC1 (9, 10) because PRAS40 and the substrates of mTORC1 (4E-BP and S6K) appear to bind raptor through a consensus sequence, the TOR signaling (TOS) motif (1014). In response to amino acid sufficiency, raptor directly interacts with a heterodimer of Rag GTPases and promotes mTORC1 localization to the Rheb-containing vesicular compartment (15).mTORC1 integrates signaling pathways from growth factors, nutrients, energy, and stress, all of which generally converge on the tuberous sclerosis complex (TSC1-TSC2) through the phosphorylation of TSC2 (1). Growth factors inhibit the GTPase-activating protein activity of TSC2 toward the small GTPase Rheb via the PI3K/Akt pathway (16, 17), whereas energy depletion activates TSC2 GTPase-activating protein activity by stimulating AMP-activated protein kinase (AMPK) (18). Rheb binds directly to mTOR, albeit with very low affinity (19), and upon charging with GTP, Rheb functions as an mTORC1 activator (6). mTORC1 complexes isolated from growth factor-stimulated cells show increased kinase activity yet do not contain detectable levels of associated Rheb. Therefore, how Rheb-GTP binding to mTOR leads to an increase in mTORC1 activity toward substrates, and what the role of raptor is in this activation is currently unknown. More recently, the AMPK and p90 ribosomal S6 kinase (RSK) have been reported to directly phosphorylate raptor and regulate mTORC1 activity. The phosphorylation of raptor directly by AMPK reduced mTORC1 activity, suggesting an alternative regulation mechanism independent of TSC2 in response to energy supply (20). RSK-mediated raptor phosphorylation enhances mTORC1 activity and provides a mechanism whereby stress may activate mTORC1 independent of the PI3K/Akt pathway (21). Therefore, the phosphorylation status of raptor can be critical for the regulation of mTORC1 activity.In this study, we investigated phosphorylation sites in raptor catalyzed by mTOR. Using two-dimensional phosphopeptide mapping, we found that Ser863 and Ser859 in raptor were phosphorylated by mTOR both in vivo and in vitro. mTORC1 activity in vitro and in vivo is associated with the phosphorylation of Ser863 in raptor.  相似文献   

19.
Mechanistic target of rapamycin (mTOR) integrates multiple extracellular and intracellular signals to regulate cell growth and survival. Hyperactivation of mTOR has been observed in various cancers. Regulation of mTOR activity is thus of importance in physiological processes and tumor development. Here, we present pyruvate dehydrogenase kinase 4 (PDK4) as a novel regulator of mTORC1 signaling. mTORC1 activity was augmented with PDK4 overexpression and reduced by PDK4 suppression in various cell lines. Furthermore, PDK4 bound to cAMP-response element-binding protein (CREB) and prevented its degradation. The enhanced CREB consequently transactivated the expression of Ras homolog enriched in brain (RHEB), a direct key activator of mTORC1, independent of AMP-activated protein kinase or tuberous sclerosis complex protein 2. PDK4 potentiated the mTORC1 effectors hypoxia-inducible factor 1α and pyruvate kinase isozymes M2 and promoted aerobic glycolysis (Warburg effect). Knockdown of PDK4 suppressed the tumor development of cancer cells with activated mTORC1. The abundance of PDK4 dictated the responsiveness of cells to the mTOR inhibitor, rapamycin. Combinatory suppression of mTOR and PDK4 exerted synergistic inhibition on cancer cell proliferation. Therefore, PDK4 promotes tumorigenesis through activation of the CREB-RHEB-mTORC1 signaling cascade.  相似文献   

20.
The serine/threonine kinase mTORC1 regulates cellular homeostasis in response to many cues, such as nutrient status and energy level. Amino acids induce mTORC1 activation on lysosomes via the small Rag GTPases and the Ragulator complex, thereby controlling protein translation and cell growth. Here, we identify the human 11-pass transmembrane protein SLC38A9 as a novel component of the Rag-Ragulator complex. SLC38A9 localizes with Rag-Ragulator complex components on lysosomes and associates with Rag GTPases in an amino acid-sensitive and nucleotide binding state-dependent manner. Depletion of SLC38A9 inhibits mTORC1 activity in the presence of amino acids and in response to amino acid replenishment following starvation. Conversely, SLC38A9 overexpression causes RHEB (Ras homolog enriched in brain) GTPase-dependent hyperactivation of mTORC1 and partly sustains mTORC1 activity upon amino acid deprivation. Intriguingly, during amino acid starvation mTOR is retained at the lysosome upon SLC38A9 depletion but fails to be activated. Together, the findings of our study reveal SLC38A9 as a Rag-Ragulator complex member transducing amino acid availability to mTORC1 activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号