首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel cell-based functional assay to directly monitor G protein-coupled receptor (GPCR) activation in a high-throughput format, based on a common GPCR regulation mechanism, the interaction between beta-arrestin and ligand-activated GPCR, is described. A protein-protein interaction technology, the InteraX trade mark system, uses a pair of inactive beta-galactosidase (beta-gal) deletion mutants as fusion partners to the protein targets of interest. To monitor GPCR activation, stable cell lines expressing both GPCR- and beta-arrestin-beta-gal fusion proteins are generated. Following ligand stimulation, beta-arrestin binds to the activated GPCR, and this interaction drives functional complementation of the beta-gal mutant fragments. GPCR activation is measured directly by quantitating restored beta-gal activity. The authors have validated this assay system with two functionally divergent GPCRs: the beta2-adrenergic amine receptor and the CXCR2 chemokine-binding receptor. Both receptors are activated or blocked with known agonists and antagonists in a dose-dependent manner. The beta2-adrenergic receptor cell line was screened with the LOPAC trade mark compound library to identify both agonists and antagonists, validating this system for high-throughput screening performance in a 96-well microplate format. Hit specificity was confirmed by quantitating the level of cAMP. This assay system has also been performed in a high-density (384-well) microplate format. This system provides a specific, sensitive, and robust methodology for studying and screening GPCR-mediated signaling pathways.  相似文献   

2.
Since the integration of viral DNA in the host genome is an essential step in the replication cycle of HIV-1, an active search for inhibitors of the integration step is ongoing. Our laboratory has been working on the development of a cellular integration system. Such a system would be helpful in the study of the HIV-1 integration process and, eventually, could be used in the search for new inhibitors that selectively interfere with HIV integration. We have previously selected stable cell lines (293T-INS) that constitutively express high levels of HIV-1 integrase (IN) from a synthetic gene [FASEB J. 14 (2000) 1389]. We have now constructed linear DNA substrates containing the terminal HIV LTR sequences (so called 'mini-HIV') and EGFP as reporter gene to evaluate whether IN can improve the integration of transfected linear DNA. After electroporation of this mini-HIV we observed a 2- to 3-fold increase in EGFP expression in IN expressing cell lines relative to control cells. The increase in EGFP expression was still evident after passaging of the cells. The effect was observed with linear DNA but not with circular DNA, thus excluding an effect on DNA uptake. The increase was the highest in the 293T-INS(D64V) cell line due to an increase in the amount of total mini-HIV DNA and 2-LTR circles as quantified by Q-PCR. Our data suggest that IN over-expressed in our cell lines interacts with the incoming DNA, protects it from nuclease degradation but does not catalyze the integration as such.  相似文献   

3.
G-protein-coupled receptors (GPCRs) are crucial cell surface receptors that transmit signals from a wide range of extracellular ligands. Indeed, 40% to 50% of all marketed drugs are thought to modulate GPCR activity, making them the major class of targets in the drug discovery process. Binding assays are widely used to identify high-affinity, selective, and potent GPCR drugs. In this field, the use of radiolabeled ligands has remained so far the gold-standard method. Here the authors report a less hazardous alternative for high-throughput screening (HTS) applications by the setup of a nonradioactive fluorescence-based technology named Tag-lite(?). Selective binding of various fluorescent ligands, either peptidic or not, covering a large panel of GPCRs from different classes is illustrated, particularly for chemokine (CXCR4), opioid (δ, μ, and κ), and cholecystokinin (CCK1 and CCK2) receptors. Affinity constants of well-known pharmacological agents of numerous GPCRs are in line with values published in the literature. The authors clearly demonstrate that the Tag-lite binding assay format can be successfully and reproducibly applied by using different cellular materials such as transient or stable recombinant cells lines expressing SNAP-tagged GPCR. Such fluorescent-based binding assays can be performed with adherent cells or cells in suspension, in 96- or 384-well plates. Altogether, this new technology offers great advantages in terms of flexibility, rapidity, and user-friendliness; allows easy miniaturization; and makes it completely suitable for HTS applications.  相似文献   

4.
The production of stable cell lines is an important technique in cell biology, and it is often the rate-limiting step in studies involving the characterization of the function of novel genes or gene mutations. To facilitate this process, a novel family of retroviral vectors, the pE vector family, has been generated. The retroviral sequences in the pE vectors have been taken from the Moloney murine leukemia virus (MMLV) vector pMFG, which has been shown to express cDNA inserts more consistently and at higher levels than earlier generations of MMLV vectors. These vectors contain four different internal ribosome entry site-selectable markers, allowing high-efficiency selection of transductants expressing the desired cDNA. The pE vectors have an episomal design to allow long-term production of high-titer virus without the need for subcloning the producer line. Using a strategy of combinatorial infection followed by combinatorial drug selection, we demonstrate that the pE vectors can be used to generate stable, polyclonal cell lines expressing at least three novel cDNAs in less than 2 weeks. The use of these vectors will thus dramatically accelerate the production of complex stable cell lines.  相似文献   

5.
The generation of a high productivity cell line is a critical step in the production of a therapeutic protein. Many innovative engineering strategies have been devised in order to maximize the expression rate of production cells for increased process efficiency. Less effort has focused on improvements to the cell line generation process, which is typically long and laborious when using mammalian cells. Based on unexpected findings when generating stable CHO cell lines expressing human IL‐17F, we studied the benefit of expressing this protein during the establishment of production cell lines. We demonstrate that IL‐17F expression enhances the rate of selection and overall number of selected cell lines as well as their transgene expression levels. We also show that this benefit is observed with different parental CHO cell lines and selection systems. Furthermore, IL‐17F expression improves the efficiency of cell line subcloning processes. IL‐17F can therefore be exploited in a standard manufacturing process to obtain higher productivity clones in a reduced time frame. Biotechnol. Bioeng. 2013; 110: 1153–1163. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
Currently, retroviral vector producer cell lines must be established for the production of each gene vector. This is done by transfection of a packaging cell line with the gene of interest. In order to find a high-titer retroviral vector producer clone, exhaustive clone screening is necessary, as the random integration of the transgene gives rise to different expression levels. We established a virus producing packaging cell line, the 293 FLEX, in which the viral vector is flanked by two different FRT sites and a selection trap. Using Flp recombinase mediated cassette exchange; this vector can be replaced by another compatible retroviral vector. The first step was the tagging of 293 cells with a lacZ reporter gene, which allowed screening and choosing a high expressing chromosomal locus. After checking that, a single copy of the construct was integrated, cassette exchangeability was confirmed with a reporter targeting construct. Subsequently gag-pol and GaLV envelope genes were stably transfected. The lacZ transgene was replaced by a GFP transgene and the 293 FLEX producer cell line maintained the titer, thus validating the flexibility and efficacy of this producer cell line. The tagged retroviral producer cell clone should constitute a highly advantageous cell line since it has a predictable titer and can be rapidly used for different therapeutic applications.  相似文献   

7.
To characterize the specificity of synthetic compounds for peroxisome proliferator-activated receptors (PPARs), three stable cell lines expressing the ligand binding domain (LBD) of human PPARalpha, PPARdelta, or PPARgamma fused to the yeast GAL4 DNA binding domain (DBD) were developed. These reporter cell lines were generated by a two-step transfection procedure. First, a stable cell line, HG5LN, expressing the reporter gene was developed. These cells were then transfected with the different receptor genes. With the help of the three PPAR reporter cell lines, we assessed the selectivity and activity of PPAR agonists GW7647, WY-14-643, L-165041, GW501516, BRL49653, ciglitazone, and pioglitazone. GW7647, L-165041, and BRL49653 were the most potent and selective agonists for hPPARalpha, hPPARdelta, and hPPARgamma, respectively. Two PPAR antagonists, GW9662 and BADGE, were also tested. GW9662 was a selective PPARgamma antagonist, whereas BADGE was a low-affinity PPAR ligand. Furthermore, GW9662 was a full antagonist on PPARgamma and PPARdelta, whereas it showed partial agonism on PPARalpha. We conclude that our stable models allow specific and sensitive measurement of PPAR ligand activities and are a high-throughput, cell-based screening tool for identifying and characterizing PPAR ligands.  相似文献   

8.
9.
BACKGROUND: A cell-based assay system (Transfluor) has been developed for measurement of G-protein coupled receptor (GPCR) activity by using cells transfected to express a fusion protein of arrestin plus green fluorescent protein (GFP) and the target GPCR. Upon agonist stimulation, the arrestin-GFP translocates to and binds the activated GPCR at the plasma membrane. The receptor/arrestin-GFP complexes then localize in clathrin-coated pits and/or intracellular vesicles. This redistribution of arrestin-GFP into condensed fluorescent spots is useful for visually monitoring the active status of GPCRs and its quantitation is possible with certain types of digital image analysis systems. METHODS: We designed two lines of image processing algorithms to carry out quantitative measurement of the arrestin-GFP movement on an inverted version of laser scanning cytometry (iCyte) as an imaging platform. We used a cell line expressing arrestin-GFP and the wild-type beta2-adrenergic receptor or a modified version of this receptor with enhanced affinity for arrestin. Each cell line was challenged with various concentrations of agonist. RESULTS: A dose-dependent signal was measured and half-maximal effective concentration values were obtained that agreed well with results determined by other methods previously reported. CONCLUSIONS: The results indicate that the combination of Transfluor, iCyte, and our algorithms is suitable for robust and pharmacologically relevant GPCR ligand exploration.  相似文献   

10.
Site specific recombinases have provided the experimental strategy necessary to modulate the expression of gene products in the mouse embryo. In this study we have exploited Cre recombinase to develop a widely applicable cell marking system which functions efficiently even at early post-implantation embryonic stages. Importantly, the techniques and reagents derived in this study are generally applicable to any recombinase driven approach, including strategies to temporally and spatially modulate endogenous or ectopic gene expression in the embryo. The cell marking scheme has two essential components which were derived as separate mouse lines. The first line carries a universal conditional lacZ reporter (UCR) locus which was prepared by using gene targeting in a novel approach to modify a ubiquitously expressed retroviral lacZ promoter trap insertion. The UCR locus is silent until it undergoes a Cre mediated DNA rearrangement to restore lacZ expression. To generate the Cre expressing allele, we outline a flexible strategy which requires the introduction of a novel IRES-Cre cassette into exon sequence of an endogenous locus by gene targeting. We successfully demonstrate this approach by generating a Cre expressing allele of the EphA2 gene, an Eph receptor protein tyrosine kinase expressed early in development. Analysis of double heterozygote embryos clearly demonstrates that Cre recombinase is expressed in vivo from the EphA2 IRES-Cre allele, and that the conditional reporter locus is efficiently restored in EphA2-expressing cells as early as 7.5 dpc. This cell marking experiment establishes the feasibility of expressing Cre recombinase from a single copy allele in the embryo and demonstrates the utility of the conditional reporter mouse which can be used in the analysis of any Cre expressing allele.  相似文献   

11.
12.
The artificial chromosome expression (ACE) technology system uses an engineered artificial chromosome containing multiple site-specific recombination acceptor sites for the rapid and efficient construction of stable cell lines. The construction of Chinese hamster ovary(CHO) cell lines expressing an IgG1 monoclonal antibody (MAb) using the ACE system has been previously described (Kennard et al., Biotechnol Bioeng. 2009;104:540-553). To further demonstrate the manufacturing feasibility of the ACE system, four CHO cell lines expressing the human IgG1 MAb 4A1 were evaluated in batch and fed-batch shake flasks and in a 2-L fed-batch bioreactor. The batch shake flasks achieved titers between 0.7 and 1.1 g/L, whereas the fed-batch shake flask process improved titers to 2.5–3.0 g/L. The lead 4A1 ACE cell line achieved titers of 4.0 g/L with an average specific productivity of 40 pg/(cell day) when cultured in a non optimized 2-L fed-batch bioreactor using a completely chemically defined process. Generational stability characterization of the lead 4A1-expressing cell line demonstrated that the cell line was stable for up to 75 days in culture. Product quality attributes of the 4A1 MAb produced by the ACE system during the stability evaluation period were unchanged and also comparable to existing expression technologies such as the CHO-dhfr system. The results of this evaluation demonstrate that a clonal, stable MAb-expressing CHO cell line can be produced using ACE technology that performs competitively using a chemically defined fed-batch bioreactor process with comparable product quality attributes to cell lines generated by existing technologies.  相似文献   

13.
Transplantation studies and cell lineage analyses require the ability to explicitly distinguish morphologically identical cells that have an identifiable marker indicating their origin in vivo. Several reporter mouse strains have been generated for such studies, but pancellular detection of the marker in all tissues has not been achieved. In this report, we describe the generation of transgenic mice that express enhanced green fluorescent protein (EGFP) under control of a 187 kb bacterial artificial chromosome (BAC) containing the murine ROSA26 locus, and show several advantages over existing EGFP reporter lines. It is demonstrated that EGFP is ubiquitously and reproducibly expressed from the murine BAC transgene in all organs and tissues analyzed, including the hematolymphoid compartment. Using this new reporter strain in hematopoietic cell transplantation studies, it is demonstrated that leukocytes in recipients maintain uniform transgene expression and are easily distinguished by flow cytometric analysis of live cells. The results suggest that the ROSA26 BAC is an efficient strategy for expressing complex transgene cassettes in vivo.  相似文献   

14.
The developing vertebrate nervous system contains a remarkable array of neural cells organized into complex, evolutionarily conserved structures. The labeling of living cells in these structures is key for the understanding of brain development and function, yet the generation of stable lines expressing reporter genes in specific spatio-temporal patterns remains a limiting step. In this study we present a fast and reliable pipeline to efficiently generate a set of stable lines expressing a reporter gene in multiple neuronal structures in the developing nervous system in medaka. The pipeline combines both the accurate computational genome-wide prediction of neuronal specific cis-regulatory modules (CRMs) and a newly developed experimental setup to rapidly obtain transgenic lines in a cost-effective and highly reproducible manner. 95% of the CRMs tested in our experimental setup show enhancer activity in various and numerous neuronal structures belonging to all major brain subdivisions. This pipeline represents a significant step towards the dissection of embryonic neuronal development in vertebrates.  相似文献   

15.
16.
目的构建稳定表达ALB启动子及荧光素酶报告基因的肝干细胞株。方法PCR扩增获得ALB启动子,并与pBGLuc连接获得携带ALB启动子及荧光素酶报告基因的pBGLuc—ALB质粒,脂质体转染质粒到不同细胞,ALB—GLuc活性检测功能。构建逆转录病毒,感染HP14.5肝干细胞株获得携带ALB启动子及荧光素酶报告基因的稳定细胞株,经Dex、HGF体外诱导后第3、6、9、12天ALB—GLuc检测荧光素酶活性,免疫荧光检测ALB的表达。结果PCR、酶切及测序结果显示ALB启动子正确插入至荧光素酶GLuc基因上游,HEK293、HP14.5、LC14d及Hepa1-6细胞中ALB—GLuc活性与免疫荧光结果一致。HP14.5ALB—Gluc稳定细胞株在高浓度的稻瘟菌素中存活,免疫荧光结果显示Dex、HGF诱导后细胞中ALB的表达逐渐增强,并与ALB—Gluc活性升高一致。结论成功构建了稳定表达ALB启动子及荧光素酶报告基因的肝干细胞株,为研究肝干细胞的体外成熟分化提供了重要的细胞手段。  相似文献   

17.
Assay technologies that measure intracellular Ca2+ release are among the predominant methods for evaluation of GPCR function. These measurements have historically been performed using cell-permeable fluorescent dyes, although the use of the recombinant photoprotein aequorin (AEQ) as a Ca2+ sensor has gained popularity with recent advances in instrumentation. The requirement of the AEQ system for cells expressing both the photoprotein and the GPCR target of interest has necessitated the labor-intensive development of cell lines stably expressing both proteins. With the goal of streamlining this process, transient transfections were used to either (1) introduce AEQ into cells stably expressing the GPCR of interest or (2) introduce the GPCR into cells stably expressing the AEQ protein, employing the human muscarinic M1 receptor as a model system. Robust results were obtained from cryopreserved cells prepared by both strategies, yielding agonist and antagonist pharmacology in good agreement with literature values. Good reproducibility was observed between multiple transient transfection events. These results indicate that transient transfection is a viable and efficient method for production of cellular reagents for use in AEQ assays.  相似文献   

18.
19.
The estrogen-related receptor α (ERRα) and the peroxisome proliferator-activated receptor γ (PPARγ) coactivator 1α (PGC-1α) play critical roles in the control of several physiological functions, including the regulation of genes involved in energy homeostasis. However, little is known about the ability of environmental chemicals to disrupt or modulate this important bioenergetics pathway in humans. The goal of this study was to develop a cell-based assay system with an intact PGC-1α/ERRα axis that could be used as a screening assay for detecting such chemicals. To this end, we successfully generated several stable cell lines expressing PGC-1α and showed that the reporter driven by the native ERRα hormone response unit (AAB-Luc) is active in these cell lines and that the activation is PGC-1α-dependent. Furthermore, we show that this activation can be blocked by the ERRα selective inverse agonist, XCT790. In addition, we find that genistein and bisphenol A further stimulate the reporter activity, while kaempferol has minimal effect. These cell lines will be useful for identifying environmental chemicals that modulate this important pathway.  相似文献   

20.
The manufacture of recombinant proteins at industrially relevant levels requires technologies that can engineer stable, high expressing cell lines rapidly, reproducibly and with relative ease. Commonly used methods incorporate transfection of mammalian cell lines with plasmid DNA containing the gene of interest. Identifying stable high expressing transfectants is normally laborious and time consuming. To improve this process, the ACE System has been developed based on pre‐engineered artificial chromosomes with multiple recombination acceptor sites. This system allows for the targeted transfection of single or multiple genes and eliminates the need for random integration into native host chromosomes. To illustrate the utility of the ACE System in generating stable, high expressing cell lines, CHO based candidate cell lines were generated to express a human monoclonal IgG1 antibody. Candidate cell lines were generated in under 6 months and expressed over 1 g/L and with specific productivities of up to 45 pg/cell/day under non‐fed, non‐optimized shake flask conditions. These candidate cell lines were shown to have stable expression of the monoclonal antibody for up to 70 days of continuous culture. The results of this study demonstrate that clonal, stable monoclonal antibody expressing CHO based cell lines can be generated by the ACE System rapidly and perform competitively with those cell lines generated by existing technologies. The ACE System, therefore, provides an attractive and practical alternative to conventional methods of cell line generation. Biotechnol. Bioeng. 2009; 104: 540–553 © 2009 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号